Provided by: liblapack-doc_3.12.1-2_all 

NAME
la_porpvgrw - la_porpvgrw: reciprocal pivot growth
SYNOPSIS
Functions real function cla_porpvgrw (uplo, ncols, a, lda, af, ldaf, work) CLA_PORPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a symmetric or Hermitian positive-definite matrix. double precision function dla_porpvgrw (uplo, ncols, a, lda, af, ldaf, work) DLA_PORPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a symmetric or Hermitian positive-definite matrix. real function sla_porpvgrw (uplo, ncols, a, lda, af, ldaf, work) SLA_PORPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a symmetric or Hermitian positive-definite matrix. double precision function zla_porpvgrw (uplo, ncols, a, lda, af, ldaf, work) ZLA_PORPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a symmetric or Hermitian positive-definite matrix.
Detailed Description
Function Documentation
real function cla_porpvgrw (character*1 uplo, integer ncols, complex, dimension( lda, * ) a, integer lda, complex, dimension( ldaf, * ) af, integer ldaf, real, dimension( * ) work) CLA_PORPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a symmetric or Hermitian positive-definite matrix. Purpose: CLA_PORPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U). The 'max absolute element' norm is used. If this is much less than 1, the stability of the LU factorization of the (equilibrated) matrix A could be poor. This also means that the solution X, estimated condition numbers, and error bounds could be unreliable. Parameters UPLO UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored. NCOLS NCOLS is INTEGER The number of columns of the matrix A. NCOLS >= 0. A A is COMPLEX array, dimension (LDA,N) On entry, the N-by-N matrix A. LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N). AF AF is COMPLEX array, dimension (LDAF,N) The triangular factor U or L from the Cholesky factorization A = U**T*U or A = L*L**T, as computed by CPOTRF. LDAF LDAF is INTEGER The leading dimension of the array AF. LDAF >= max(1,N). WORK WORK is REAL array, dimension (2*N) Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. double precision function dla_porpvgrw (character*1 uplo, integer ncols, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( ldaf, * ) af, integer ldaf, double precision, dimension( * ) work) DLA_PORPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a symmetric or Hermitian positive-definite matrix. Purpose: DLA_PORPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U). The 'max absolute element' norm is used. If this is much less than 1, the stability of the LU factorization of the (equilibrated) matrix A could be poor. This also means that the solution X, estimated condition numbers, and error bounds could be unreliable. Parameters UPLO UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored. NCOLS NCOLS is INTEGER The number of columns of the matrix A. NCOLS >= 0. A A is DOUBLE PRECISION array, dimension (LDA,N) On entry, the N-by-N matrix A. LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N). AF AF is DOUBLE PRECISION array, dimension (LDAF,N) The triangular factor U or L from the Cholesky factorization A = U**T*U or A = L*L**T, as computed by DPOTRF. LDAF LDAF is INTEGER The leading dimension of the array AF. LDAF >= max(1,N). WORK WORK is DOUBLE PRECISION array, dimension (2*N) Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. real function sla_porpvgrw (character*1 uplo, integer ncols, real, dimension( lda, * ) a, integer lda, real, dimension( ldaf, * ) af, integer ldaf, real, dimension( * ) work) SLA_PORPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a symmetric or Hermitian positive-definite matrix. Purpose: SLA_PORPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U). The 'max absolute element' norm is used. If this is much less than 1, the stability of the LU factorization of the (equilibrated) matrix A could be poor. This also means that the solution X, estimated condition numbers, and error bounds could be unreliable. Parameters UPLO UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored. NCOLS NCOLS is INTEGER The number of columns of the matrix A. NCOLS >= 0. A A is REAL array, dimension (LDA,N) On entry, the N-by-N matrix A. LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N). AF AF is REAL array, dimension (LDAF,N) The triangular factor U or L from the Cholesky factorization A = U**T*U or A = L*L**T, as computed by SPOTRF. LDAF LDAF is INTEGER The leading dimension of the array AF. LDAF >= max(1,N). WORK WORK is REAL array, dimension (2*N) Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd. double precision function zla_porpvgrw (character*1 uplo, integer ncols, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( ldaf, * ) af, integer ldaf, double precision, dimension( * ) work) ZLA_PORPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a symmetric or Hermitian positive-definite matrix. Purpose: ZLA_PORPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U). The 'max absolute element' norm is used. If this is much less than 1, the stability of the LU factorization of the (equilibrated) matrix A could be poor. This also means that the solution X, estimated condition numbers, and error bounds could be unreliable. Parameters UPLO UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored. NCOLS NCOLS is INTEGER The number of columns of the matrix A. NCOLS >= 0. A A is COMPLEX*16 array, dimension (LDA,N) On entry, the N-by-N matrix A. LDA LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N). AF AF is COMPLEX*16 array, dimension (LDAF,N) The triangular factor U or L from the Cholesky factorization A = U**T*U or A = L*L**T, as computed by ZPOTRF. LDAF LDAF is INTEGER The leading dimension of the array AF. LDAF >= max(1,N). WORK WORK is DOUBLE PRECISION array, dimension (2*N) Author Univ. of Tennessee Univ. of California Berkeley Univ. of Colorado Denver NAG Ltd.
Author
Generated automatically by Doxygen for LAPACK from the source code. Version 3.12.0 Tue Jan 28 2025 00:54:31 la_porpvgrw(3)