Provided by: grass-doc_8.4.1-1_all bug

NAME

       t.rast.series   -  Performs  different  aggregation algorithms from r.series on all or a subset of raster
       maps in a space time raster dataset.

KEYWORDS

       temporal, aggregation, series, raster, time

SYNOPSIS

       t.rast.series
       t.rast.series --help
       t.rast.series     [-tn]     input=name      method=string[,string,...]       [quantile=float[,float,...]]
       [order=string[,string,...]]      [nprocs=integer]      [memory=memory    in    MB]      [where=sql_query]
       output=name[,name,...]  [file_limit=integer]   [--overwrite]  [--help]  [--verbose]  [--quiet]  [--ui]

   Flags:
       -t
           Do not assign the space time raster dataset start and end time to the output map

       -n
           Propagate NULLs

       --overwrite
           Allow output files to overwrite existing files

       --help
           Print usage summary

       --verbose
           Verbose module output

       --quiet
           Quiet module output

       --ui
           Force launching GUI dialog

   Parameters:
       input=name [required]
           Name of the input space time raster dataset

       method=string[,string,...] [required]
           Aggregate operation to be performed on the raster maps
           Options: average, count, median, mode, minimum, min_raster, maximum, max_raster, stddev, range,  sum,
           variance, diversity, slope, offset, detcoeff, quart1, quart3, perc90, quantile, skewness, kurtosis
           Default: average

       quantile=float[,float,...]
           Quantile to calculate for method=quantile
           Options: 0.0-1.0

       order=string[,string,...]
           Sort the maps by category
           Options:  id,   name,   creator,  mapset,  creation_time,  modification_time,  start_time,  end_time,
           north,  south,  west,  east,  min,  max
           Default: start_time

       nprocs=integer
           Number of threads for parallel computing
           Default: 1

       memory=memory in MB
           Maximum memory to be used (in MB)
           Cache size for raster rows
           Default: 300

       where=sql_query
           WHERE conditions of SQL statement without ’where’ keyword used in the temporal GIS framework
           Example: start_time > ’2001-01-01 12:30:00’

       output=name[,name,...] [required]
           Name for output raster map(s)

       file_limit=integer
           The maximum number of open files allowed for each r.series process
           Default: 1000

DESCRIPTION

       The input of this module is a single space time raster dataset, the output is a single raster map  layer.
       A  subset  of  the input space time raster dataset can be selected using the where option. The sorting of
       the raster map layer can be set using the order  option.  Be  aware  that  the  order  of  the  maps  can
       significantly  influence  the result of the aggregation (e.g.: slope). By default the maps are ordered by
       start_time.

       t.rast.series is a simple wrapper for the raster module r.series. It supports a subset of the aggregation
       methods of r.series.

NOTES

       To avoid problems with too many open files, by default, the maximum number of open files is set to  1000.
       If  the  number of input raster files exceeds this number, the -z flag will be invoked. Because this will
       slow down processing, the user can set a higher limit with the file_limit parameter. Note that file_limit
       limit should not exceed the user-specific limit on open files set by your operating system. See the  Wiki
       for more information.

Performance

       To  enable  parallel  processing,  the  user can specify the number of threads to be used with the nprocs
       parameter (default 1). The memory parameter (default 300 MB) can also be provided to determine  the  size
       of  the  buffer  in MB for computation. Both parameters are passed to r.series.  To take advantage of the
       parallelization, GRASS GIS needs to be compiled with OpenMP enabled.

EXAMPLES

   Estimate the average temperature for the whole time series
       Here the entire stack of input maps is considered:
       t.rast.series input=tempmean_monthly output=tempmean_average method=average

   Estimate the average temperature for a subset of the time series
       Here the stack of input maps is limited to a certain period of time:
       t.rast.series input=tempmean_daily output=tempmean_season method=average \
         where="start_time >= ’2012-06’ and start_time <= ’2012-08’"

   Climatology: single month in a multi-annual time series
       By considering only a single month in a  multi-annual  time  series  the  so-called  climatology  can  be
       computed.  Estimate average temperature for all January maps in the time series:
       t.rast.series input=tempmean_monthly \
           method=average output=tempmean_january \
           where="strftime(’%m’, start_time)=’01’"
       # equivalently, we can use
       t.rast.series input=tempmean_monthly \
           output=tempmean_january method=average \
           where="start_time = datetime(start_time, ’start of year’, ’0 month’)"
       # if we want also February and March averages
       t.rast.series input=tempmean_monthly \
           output=tempmean_february method=average \
           where="start_time = datetime(start_time, ’start of year’, ’1 month’)"
       t.rast.series input=tempmean_monthly \
           output=tempmean_march method=average \
           where="start_time = datetime(start_time, ’start of year’, ’2 month’)"
       Generalizing a bit, we can estimate monthly climatologies for all months by means of different methods
       for i in `seq -w 1 12` ; do
         for m in average stddev minimum maximum ; do
           t.rast.series input=tempmean_monthly method=${m} output=tempmean_${m}_${i} \
           where="strftime(’%m’, start_time)=’${i}’"
         done
       done

SEE ALSO

        r.series, t.create, t.info

       Temporal data processing Wiki

AUTHOR

       Sören Gebbert, Thünen Institute of Climate-Smart Agriculture

SOURCE CODE

       Available at: t.rast.series source code (history)

       Accessed: Friday Apr 04 01:21:15 2025

       Main index | Temporal index | Topics index | Keywords index | Graphical index | Full index

       © 2003-2025 GRASS Development Team, GRASS GIS 8.4.1 Reference Manual

GRASS 8.4.1                                                                                t.rast.series(1grass)