Provided by: freeipmi-tools_1.6.13-3_amd64 bug

NAME

       ipmi-fru - display FRU information

SYNOPSIS

       ipmi-fru [OPTION...]

DESCRIPTION

       Ipmi-fru  displays  Field  Replaceable Unit (FRU) Information. The FRU may hold a variety of information,
       such as device information, hardware information, serial numbers, and part numbers.

       Listed below are general IPMI options, tool specific options, trouble  shooting  information,  workaround
       information, examples, and known issues. For a general introduction to FreeIPMI please see freeipmi(7).

GENERAL OPTIONS

       The  following  options are general options for configuring IPMI communication and executing general tool
       commands.

       -D IPMIDRIVER, --driver-type=IPMIDRIVER
              Specify the driver type to use instead of  doing  an  auto  selection.   The  currently  available
              outofband  drivers  are  LAN  and  LAN_2_0,  which perform IPMI 1.5 and IPMI 2.0 respectively. The
              currently available inband drivers are KCS, SSIF, OPENIPMI, SUNBMC, and INTELDCMI.

       --disable-auto-probe
              Do not probe in-band IPMI devices for default settings.

       --driver-address=DRIVER-ADDRESS
              Specify the in-band driver address to be used instead of the probed value.  DRIVER-ADDRESS  should
              be prefixed with "0x" for a hex value and '0' for an octal value.

       --driver-device=DEVICE
              Specify the in-band driver device path to be used instead of the probed path.

       --register-spacing=REGISTER-SPACING
              Specify  the  in-band  driver  register  spacing instead of the probed value. Argument is in bytes
              (i.e. 32bit register spacing = 4)

       --target-channel-number=CHANNEL-NUMBER
              Specify the in-band driver target channel number to send IPMI requests to.

       --target-slave-address=SLAVE-ADDRESS
              Specify the in-band driver target slave number to send IPMI requests to.

       -h IPMIHOST1,IPMIHOST2,..., --hostname=IPMIHOST1[:PORT],IPMIHOST2[:PORT],...
              Specify the remote host(s) to communicate with. Multiple hostnames may be separated  by  comma  or
              may  be  specified  in  a  range  format;  see  HOSTRANGED  SUPPORT below. An optional port can be
              specified with each host, which may be useful  in  port  forwarding  or  similar  situations.   If
              specifying an IPv6 address and port, use the format [ADDRESS]:PORT.

       -u USERNAME, --username=USERNAME
              Specify  the  username  to use when authenticating with the remote host.  If not specified, a null
              (i.e. anonymous) username is assumed. The user must have atleast USER privileges in order for this
              tool to operate fully.

       -p PASSWORD, --password=PASSWORD
              Specify the password to use when authenticationg with the remote host.  If not specified,  a  null
              password is assumed. Maximum password length is 16 for IPMI 1.5 and 20 for IPMI 2.0.

       -P, --password-prompt
              Prompt for password to avoid possibility of listing it in process lists.

       -k K_G, --k-g=K_G
              Specify  the  K_g  BMC  key  to  use when authenticating with the remote host for IPMI 2.0. If not
              specified, a null key is assumed. To input the key in hexadecimal form,  prefix  the  string  with
              '0x'. E.g., the key 'abc' can be entered with the either the string 'abc' or the string '0x616263'

       -K, --k-g-prompt
              Prompt for k-g to avoid possibility of listing it in process lists.

       --session-timeout=MILLISECONDS
              Specify  the  session  timeout in milliseconds. Defaults to 20000 milliseconds (20 seconds) if not
              specified.

       --retransmission-timeout=MILLISECONDS
              Specify the packet retransmission timeout  in  milliseconds.  Defaults  to  1000  milliseconds  (1
              second) if not specified. The retransmission timeout cannot be larger than the session timeout.

       -a AUTHENTICATION-TYPE, --authentication-type=AUTHENTICATION-TYPE
              Specify  the IPMI 1.5 authentication type to use. The currently available authentication types are
              NONE, STRAIGHT_PASSWORD_KEY, MD2, and MD5. Defaults to MD5 if not specified.

       -I CIPHER-SUITE-ID, --cipher-suite-id=CIPHER-SUITE-ID
              Specify the IPMI  2.0  cipher  suite  ID  to  use.  The  Cipher  Suite  ID  identifies  a  set  of
              authentication,  integrity,  and confidentiality algorithms to use for IPMI 2.0 communication. The
              authentication algorithm identifies  the  algorithm  to  use  for  session  setup,  the  integrity
              algorithm  identifies  the algorithm to use for session packet signatures, and the confidentiality
              algorithm identifies the algorithm to use for payload encryption. Defaults to cipher suite ID 3 if
              not specified. The following cipher suite ids are currently supported:

              0 - Authentication Algorithm = None; Integrity Algorithm = None; Confidentiality Algorithm = None

              1 - Authentication Algorithm = HMAC-SHA1; Integrity Algorithm = None; Confidentiality Algorithm  =
              None

              2  -  Authentication  Algorithm  =  HMAC-SHA1; Integrity Algorithm = HMAC-SHA1-96; Confidentiality
              Algorithm = None

              3 - Authentication Algorithm = HMAC-SHA1;  Integrity  Algorithm  =  HMAC-SHA1-96;  Confidentiality
              Algorithm = AES-CBC-128

              6  -  Authentication Algorithm = HMAC-MD5; Integrity Algorithm = None; Confidentiality Algorithm =
              None

              7 - Authentication Algorithm =  HMAC-MD5;  Integrity  Algorithm  =  HMAC-MD5-128;  Confidentiality
              Algorithm = None

              8  -  Authentication  Algorithm  =  HMAC-MD5;  Integrity Algorithm = HMAC-MD5-128; Confidentiality
              Algorithm = AES-CBC-128

              11 - Authentication Algorithm = HMAC-MD5; Integrity Algorithm = MD5-128; Confidentiality Algorithm
              = None

              12 - Authentication Algorithm = HMAC-MD5; Integrity Algorithm = MD5-128; Confidentiality Algorithm
              = AES-CBC-128

              15 - Authentication Algorithm = HMAC-SHA256; Integrity Algorithm = None; Confidentiality Algorithm
              = None

              16  -  Authentication  Algorithm   =   HMAC-SHA256;   Integrity   Algorithm   =   HMAC_SHA256_128;
              Confidentiality Algorithm = None

              17   -   Authentication   Algorithm   =   HMAC-SHA256;   Integrity  Algorithm  =  HMAC_SHA256_128;
              Confidentiality Algorithm = AES-CBC-128

       -l PRIVILEGE-LEVEL, --privilege-level=PRIVILEGE-LEVEL
              Specify the privilege level to be  used.  The  currently  available  privilege  levels  are  USER,
              OPERATOR, and ADMIN. Defaults to USER if not specified.

       --config-file=FILE
              Specify an alternate configuration file.

       -W WORKAROUNDS, --workaround-flags=WORKAROUNDS
              Specify  workarounds  to vendor compliance issues. Multiple workarounds can be specified separated
              by commas. A special command line flag of "none", will indicate no workarounds (may be useful  for
              overriding configured defaults). See WORKAROUNDS below for a list of available workarounds.

       --debug
              Turn on debugging.

       -?, --help
              Output a help list and exit.

       --usage
              Output a usage message and exit.

       -V, --version
              Output the program version and exit.

IPMI-FRU OPTIONS

       The following options are specific to ipmi-fru.

       -e, --device-id=IDNUM
              Specify a specific FRU device ID.

       -v, --verbose
              Increase verbosity in output to include additional output.

       --bridge-fru
              By  default,  FRU entries on other satellite controllers will not be read by default. Bridging may
              not work on some interfaces/driver types.

       --interpret-oem-data
              Attempt to interpret OEM data, such as event data, sensor readings, or general extra info, etc. If
              an OEM interpretation is not available, the default output will be generated. Correctness  of  OEM
              interpretations  cannot  be  guaranteed due to potential changes OEM vendors may make in products,
              firmware, etc. See OEM INTERPRETATION below for confirmed supported motherboard interpretations.

       --fru-file=FILENAME
              Output data from the specified FRU binary file instead of reading FRU data off of a board.

SDR CACHE OPTIONS

       This tool requires access to the sensor data repository (SDR) cache for general  operation.  By  default,
       SDR  data  will  be  downloaded  and  cached on the local machine. The following options apply to the SDR
       cache.

       --flush-cache
              Flush a cached version of the sensor data repository (SDR) cache. The SDR is typically cached  for
              faster  subsequent access. However, it may need to be flushed and re-generated if the SDR has been
              updated on a system.

       --quiet-cache
              Do not output information about cache creation/deletion. May be useful in scripting.

       --sdr-cache-recreate
              If the SDR cache is out of date or invalid, automatically  recreate  the  sensor  data  repository
              (SDR) cache. This option may be useful for scripting purposes.

       --sdr-cache-file=FILE
              Specify  a  specific  sensor  data  repository (SDR) cache file to be stored or read from. If this
              option is used when multiple hosts are specified, the same SDR cache file will  be  used  for  all
              hosts.

       --sdr-cache-directory=DIRECTORY
              Specify  an alternate directory for sensor data repository (SDR) caches to be stored or read from.
              Defaults to the home directory if not specified.

       --ignore-sdr-cache
              Ignore SDR cache related processing. May lead to  incomplete  or  less  useful  information  being
              output,  however  it  will  allow  functionality  for systems without SDRs or when the correct SDR
              cannot be loaded.

TIME OPTIONS

       By IPMI definition, all IPMI times and timestamps are stored in localtime. However, in  many  situations,
       the  timestamps  will  not be stored in localtime. Whether or not a system truly stored the timestamps in
       localtime varies on many factors, such as the vendor, BIOS, and operating system.  The following  options
       will allow the user to adjust the interpretation of the stored timestamps and how they should be output.

       --utc-to-localtime
              Assume all times are reported in UTC time and convert the time to localtime before being output.

       --localtime-to-utc
              Convert all localtime timestamps to UTC before being output.

       --utc-offset=SECONDS
              Specify  a  specific UTC offset in seconds to be added to timestamps.  Value can range from -86400
              to 86400 seconds. Defaults to 0.

HOSTRANGED OPTIONS

       The following  options  manipulate  hostranged  output.  See  HOSTRANGED  SUPPORT  below  for  additional
       information on hostranges.

       -B, --buffer-output
              Buffer  hostranged  output. For each node, buffer standard output until the node has completed its
              IPMI operation. When specifying this option, data may appear to output slower to  the  user  since
              the the entire IPMI operation must complete before any data can be output.  See HOSTRANGED SUPPORT
              below for additional information.

       -C, --consolidate-output
              Consolidate  hostranged  output.  The  complete  standard output from every node specified will be
              consolidated so that nodes with identical output are not output twice. A header  will  list  those
              nodes with the consolidated output. When this option is specified, no output can be seen until the
              IPMI  operations  to  all  nodes  has  completed. If the user breaks out of the program early, all
              currently consolidated output  will  be  dumped.  See  HOSTRANGED  SUPPORT  below  for  additional
              information.

       -F NUM, --fanout=NUM
              Specify  multiple  host fanout. A "sliding window" (or fanout) algorithm is used for parallel IPMI
              communication so that slower nodes or timed out nodes will not impede parallel communication.  The
              maximum number of threads available at the same time is limited by the fanout. The default is 64.

       -E, --eliminate
              Eliminate  hosts determined as undetected by ipmidetect.  This attempts to remove the common issue
              of hostranged execution timing out due to several nodes being removed  from  service  in  a  large
              cluster. The ipmidetectd daemon must be running on the node executing the command.

       --always-prefix
              Always  prefix output, even if only one host is specified or communicating in-band. This option is
              primarily useful for scripting purposes. Option will be ignored if specified with the -C option.

HOSTRANGED SUPPORT

       Multiple hosts can be input either as an explicit comma separated lists of hosts or a range of  hostnames
       in  the  general  form:  prefix[n-m,l-k,...],  where  n  < m and l < k, etc. The later form should not be
       confused with regular expression character classes (also denoted by []). For example,  foo[19]  does  not
       represent foo1 or foo9, but rather represents a degenerate range: foo19.

       This  range  syntax  is  meant  only  as  a convenience on clusters with a prefixNN naming convention and
       specification of ranges should not be considered necessary -- the list foo1,foo9 could  be  specified  as
       such, or by the range foo[1,9].

       Some examples of range usage follow:
           foo[01-05] instead of foo01,foo02,foo03,foo04,foo05
           foo[7,9-10] instead of foo7,foo9,foo10
           foo[0-3] instead of foo0,foo1,foo2,foo3

       As  a  reminder  to  the  reader,  some  shells  will  interpret brackets ([ and ]) for pattern matching.
       Depending on your shell, it may be necessary to enclose ranged lists within quotes.

       When multiple hosts are specified by the user, a thread will be executed for each host in parallel up  to
       the  configured  fanout (which can be adjusted via the -F option). This will allow communication to large
       numbers of nodes far more quickly than if done in serial.

       By default, standard output from each node specified will be output with the hostname prepended  to  each
       line.  Although  this  output  is  readable  in  many  situations,  it  may be difficult to read in other
       situations. For example, output from multiple nodes may be mixed together. The -B and -C options  can  be
       used to change this default.

       In-band  IPMI  Communication will be used when the host "localhost" is specified. This allows the user to
       add the localhost into the hostranged output.

GENERAL TROUBLESHOOTING

       Most often, IPMI problems are due to configuration problems.

       IPMI over LAN problems involve a misconfiguration of the remote machine's BMC.  Double check to make sure
       the following are configured properly in the remote machine's BMC: IP address, MAC address, subnet  mask,
       username,  user  enablement,  user  privilege,  password,  LAN  privilege,  LAN  enablement,  and allowed
       authentication type(s). For IPMI 2.0 connections, double check to make sure the cipher suite privilege(s)
       and K_g key are configured properly. The ipmi-config(8) tool can be used to  check  and/or  change  these
       configuration settings.

       Inband IPMI problems are typically caused by improperly configured drivers or non-standard BMCs.

       In  addition  to  the  troubleshooting  tips below, please see WORKAROUNDS below to also if there are any
       vendor specific bugs that have been discovered and worked around.

       Listed below are many of the common issues for error messages.  For additional support, please e-mail the
       <freeipmi-users@gnu.org> mailing list.

       "username invalid" - The username entered (or a NULL username if none was entered) is  not  available  on
       the remote machine. It may also be possible the remote BMC's username configuration is incorrect.

       "password invalid" - The password entered (or a NULL password if none was entered) is not correct. It may
       also be possible the password for the user is not correctly configured on the remote BMC.

       "password  verification  timeout"  -  Password  verification  has  timed out.  A "password invalid" error
       (described above) or a generic "session timeout" (described below) occurred.  During this  point  in  the
       protocol it cannot be differentiated which occurred.

       "k_g  invalid"  - The K_g key entered (or a NULL K_g key if none was entered) is not correct. It may also
       be possible the K_g key is not correctly configured on the remote BMC.

       "privilege level insufficient" -  An  IPMI  command  requires  a  higher  user  privilege  than  the  one
       authenticated  with.  Please try to authenticate with a higher privilege. This may require authenticating
       to a different user which has a higher maximum privilege.

       "privilege level cannot be obtained  for  this  user"  -  The  privilege  level  you  are  attempting  to
       authenticate  with  is  higher  than  the  maximum  allowed  for this user. Please try again with a lower
       privilege. It may also be possible the maximum privilege level allowed  for  a  user  is  not  configured
       properly on the remote BMC.

       "authentication  type  unavailable  for  attempted privilege level" - The authentication type you wish to
       authenticate with is not available  for  this  privilege  level.  Please  try  again  with  an  alternate
       authentication  type  or  alternate privilege level. It may also be possible the available authentication
       types you can authenticate with are not correctly configured on the remote BMC.

       "cipher suite id unavailable" - The cipher suite id you wish to authenticate with is not available on the
       remote BMC. Please try again with an alternate cipher suite id. It may also  be  possible  the  available
       cipher suite ids are not correctly configured on the remote BMC.

       "ipmi  2.0  unavailable"  - IPMI 2.0 was not discovered on the remote machine. Please try to use IPMI 1.5
       instead.

       "connection timeout" - Initial IPMI communication failed. A number  of  potential  errors  are  possible,
       including  an  invalid  hostname specified, an IPMI IP address cannot be resolved, IPMI is not enabled on
       the remote server, the network connection is bad, etc. Please verify configuration and connectivity.

       "session timeout" - The IPMI session has timed out. Please reconnect.  If this error  occurs  often,  you
       may wish to increase the retransmission timeout. Some remote BMCs are considerably slower than others.

       "device  not  found"  - The specified device could not be found. Please check configuration or inputs and
       try again.

       "driver timeout" - Communication with the driver or device has timed out. Please try again.

       "message timeout" - Communication with the driver or device has timed out. Please try again.

       "BMC busy" - The BMC is currently busy. It may be processing information or have  too  many  simultaneous
       sessions to manage. Please wait and try again.

       "could  not  find  inband  device"  - An inband device could not be found.  Please check configuration or
       specify specific device or driver on the command line.

       "driver timeout" - The inband driver has timed out communicating to the local BMC or  service  processor.
       The BMC or service processor may be busy or (worst case) possibly non-functioning.

       "internal  IPMI  error" - An IPMI error has occurred that FreeIPMI does not know how to handle. Please e-
       mail <freeipmi-users@gnu.org> to report the issue.

WORKAROUNDS

       With so many different vendors implementing their own IPMI solutions,  different  vendors  may  implement
       their  IPMI protocols incorrectly. The following describes a number of workarounds currently available to
       handle discovered compliance issues. When possible, workarounds have been implemented  so  they  will  be
       transparent  to  the user. However, some will require the user to specify a workaround be used via the -W
       option.

       The hardware listed below may only indicate the hardware that a problem was discovered on. Newer versions
       of hardware may fix the problems indicated below. Similar machines from vendors may or  may  not  exhibit
       the same problems. Different vendors may license their firmware from the same IPMI firmware developer, so
       it may be worthwhile to try workarounds listed below even if your motherboard is not listed.

       If  you  believe  your  hardware  has  an  additional  compliance  issue  that  needs  a workaround to be
       implemented,   please   contact    the    FreeIPMI    maintainers    on    <freeipmi-users@gnu.org>    or
       <freeipmi-devel@gnu.org>.

       assumeio  -  This  workaround  flag will assume inband interfaces communicate with system I/O rather than
       being memory-mapped. This will work around systems that report invalid base addresses. Those hitting this
       issue may see "device not supported" or "could not find inband device"  errors.   Issue  observed  on  HP
       ProLiant DL145 G1.

       spinpoll  -  This  workaround  flag will inform some inband drivers (most notably the KCS driver) to spin
       while polling rather than putting the process to sleep. This may significantly  improve  the  wall  clock
       running  time  of  tools  because an operating system scheduler's granularity may be much larger than the
       time it takes to perform a single IPMI message transaction. However, by  spinning,  your  system  may  be
       performing less useful work by not contexting out the tool for a more useful task.

       authcap  -  This  workaround  flag  will  skip  early  checks  for  username capabilities, authentication
       capabilities, and K_g support and allow IPMI authentication to succeed. It works around  multiple  issues
       in  which  the remote system does not properly report username capabilities, authentication capabilities,
       or K_g status. Those hitting this issue may see "username invalid", "authentication type unavailable  for
       attempted  privilege  level",  or "k_g invalid" errors.  Issue observed on Asus P5M2/P5MT-R/RS162-E4/RX4,
       Intel SR1520ML/X38ML, and Sun Fire 2200/4150/4450 with ELOM.

       nochecksumcheck - This workaround flag will tell FreeIPMI to not check the checksums returned  from  IPMI
       command  responses.  It  works around systems that return invalid checksums due to implementation errors,
       but the packet is otherwise valid. Users are  cautioned  on  the  use  of  this  option,  as  it  removes
       validation  of  packet  integrity in a number of circumstances. However, it is unlikely to be an issue in
       most situations. Those hitting this issue may see "connection timeout", "session timeout",  or  "password
       verification  timeout"  errors. On IPMI 1.5 connections, the "noauthcodecheck" workaround may also needed
       too. Issue observed on Supermicro X9SCM-iiF, Supermicro X9DRi-F, and Supermicro X9DRFR.

       idzero - This workaround flag will allow empty session IDs to be accepted by the client. It works  around
       IPMI  sessions  that  report  empty  session IDs to the client. Those hitting this issue may see "session
       timeout" errors. Issue observed on Tyan S2882 with M3289 BMC.

       unexpectedauth - This workaround flag will allow unexpected non-null authcodes to be  checked  as  though
       they  were expected. It works around an issue when packets contain non-null authentication data when they
       should be null due to disabled per-message authentication. Those hitting  this  issue  may  see  "session
       timeout" errors. Issue observed on Dell PowerEdge 2850,SC1425. Confirmed fixed on newer firmware.

       forcepermsg  -  This  workaround  flag will force per-message authentication to be used no matter what is
       advertised by the remote system. It works around an issue when per-message authentication  is  advertised
       as  disabled on the remote system, but it is actually required for the protocol. Those hitting this issue
       may see "session timeout" errors.  Issue observed on IBM eServer 325.

       endianseq - This workaround flag will flip the endian of  the  session  sequence  numbers  to  allow  the
       session  to  continue  properly.  It  works  around  IPMI 1.5 session sequence numbers that are the wrong
       endian.  Those hitting this issue may see "session timeout" errors.  Issue  observed  on  some  Sun  ILOM
       1.0/2.0 (depends on service processor endian).

       noauthcodecheck  - This workaround flag will tell FreeIPMI to not check the authentication codes returned
       from IPMI 1.5 command responses. It works around systems that return invalid authentication codes due  to
       hashing  or  implementation  errors.  Users  are  cautioned  on  the use of this option, as it removes an
       authentication check verifying the validity of a packet. However, in most organizations, this is unlikely
       to be a security issue. Those hitting this issue may see  "connection  timeout",  "session  timeout",  or
       "password  verification  timeout"  errors.   Issue observed on Xyratex FB-H8-SRAY, Intel Windmill, Quanta
       Winterfell, and Wiwynn Windmill.

       intel20 - This workaround flag will work around several Intel IPMI 2.0 authentication issues. The  issues
       covered  include  padding  of usernames, and password truncation if the authentication algorithm is HMAC-
       MD5-128. Those hitting this issue may see  "username  invalid",  "password  invalid",  or  "k_g  invalid"
       errors. Issue observed on Intel SE7520AF2 with Intel Server Management Module (Professional Edition).

       supermicro20 - This workaround flag will work around several Supermicro IPMI 2.0 authentication issues on
       motherboards   w/   Peppercon   IPMI  firmware.  The  issues  covered  include  handling  invalid  length
       authentication codes. Those hitting this issue may see "password  invalid"  errors.   Issue  observed  on
       Supermicro H8QME with SIMSO daughter card. Confirmed fixed on newerver firmware.

       sun20 - This workaround flag will work work around several Sun IPMI 2.0 authentication issues. The issues
       covered  include  invalid  lengthed  hash keys, improperly hashed keys, and invalid cipher suite records.
       Those hitting this issue may see "password invalid" or "bmc error" errors.  Issue observed  on  Sun  Fire
       4100/4200/4500 with ILOM.  This workaround automatically includes the "opensesspriv" workaround.

       opensesspriv  -  This  workaround  flag  will  slightly  alter FreeIPMI's IPMI 2.0 connection protocol to
       workaround an invalid hashing algorithm used by the remote system. The privilege level  sent  during  the
       Open Session stage of an IPMI 2.0 connection is used for hashing keys instead of the privilege level sent
       during the RAKP1 connection stage. Those hitting this issue may see "password invalid", "k_g invalid", or
       "bad  rmcpplus  status  code"  errors.   Issue  observed  on  Sun Fire 4100/4200/4500 with ILOM, Inventec
       5441/Dell Xanadu II, Supermicro  X8DTH,  Supermicro  X8DTG,  Intel  S5500WBV/Penguin  Relion  700,  Intel
       S2600JF/Appro  512X,  Quanta  QSSC-S4R/Appro  GB812X-CN, and Dell C5220. This workaround is automatically
       triggered with the "sun20" workaround.

       integritycheckvalue - This workaround flag will work around an invalid integrity check  value  during  an
       IPMI  2.0  session  establishment  when  using  Cipher  Suite ID 0. The integrity check value should be 0
       length, however the remote motherboard responds with a non-empty field. Those hitting this issue may  see
       "k_g  invalid"  errors.  Issue observed on Supermicro X8DTG, Supermicro X8DTU, and Intel S5500WBV/Penguin
       Relion 700, and Intel S2600JF/Appro 512X.

       assumemaxsdrrecordcount - This workaround will inform SDR reading to stop reading after a  known  maximum
       number  of  SDR  records  have  been  read.  This will work around systems that have miss-implemented SDR
       reading functions. Those hitting this issue may see "SDR record count invalid" errors. Issue observed  on
       unspecified Inspur motherboard.

       skipchecks  -  This  workaround option will skip FRU checksum checks. Some FRUs have incorrect checksums,
       but the FRU data is correct. Those hitting this issue may see "checksum  invalid"  errors  in  their  FRU
       output.  Output  may  be  unknown, pray for the best. This option is confirmed to work around compliances
       issues on Inventec 5441/Dell Xanadu II, Dell Poweredge R610, and Dell Poweredge R710 motherboards.

       No IPMI 1.5 Support - Some motherboards that support IPMI 2.0 have been found to not  support  IPMI  1.5.
       Those hitting this issue may see "ipmi 2.0 unavailable" or "connection timeout" errors. This issue can be
       worked  around  by using IPMI 2.0 instead of IPMI 1.5 by specifying --driver-type=LAN_2_0. Issue observed
       on a number of HP and Supermicro motherboards.

OEM INTERPRETATION

       The following motherboards are confirmed to have atleast some support by the --interpret-oem-data option.
       While highly probable the OEM data interpretations would work  across  other  motherboards  by  the  same
       manufacturer,   there   are   no  guarantees.  Some  of  the  motherboards  below  may  be  rebranded  by
       vendors/distributors.

       Wistron/Dell Poweredge C6220

EXAMPLES

       # ipmi-fru

       Get FRU information of the local machine.

       # ipmi-fru --verbose

       Get verbose FRU information of the local machine.

       # ipmi-fru -h ahost -u myusername -p mypassword

       Get FRU information of a remote machine using IPMI over LAN.

       # ipmi-fru -h mycluster[0-127] -u myusername -p mypassword

       Get FRU information across a cluster using IPMI over LAN.

IPMI-FRU KNOWN ISSUES

       Not all language codes are supported in ipmi-fru.  If additional language code support is required please
       contact the FreeIPMI maintainers.

DIAGNOSTICS

       Upon successful execution, exit status is 0. On error, exit status is 1.

       If multiple hosts are specified for communication, the exit status is  0  if  and  only  if  all  targets
       successfully execute. Otherwise the exit status is 1.

KNOWN ISSUES

       On older operating systems, if you input your username, password, and other potentially security relevant
       information  on the command line, this information may be discovered by other users when using tools like
       the ps(1) command or looking in the /proc file system. It is generally  more  secure  to  input  password
       information  with  options  like  the  -P or -K options. Configuring security relevant information in the
       FreeIPMI configuration file would also be an appropriate way to hide this information.

       In order to prevent brute force attacks, some BMCs will temporarily "lock up" after a  number  of  remote
       authentication  errors.  You  may need to wait awhile in order to this temporary "lock up" to pass before
       you may authenticate again.

REPORTING BUGS

       Report bugs to <freeipmi-users@gnu.org> or <freeipmi-devel@gnu.org>.

COPYRIGHT

       Copyright (C) 2007-2015 Lawrence Livermore National Security, LLC.
       Copyright (C) 2007 The Regents of the University of California.

       This program is free software; you can redistribute it and/or modify  it  under  the  terms  of  the  GNU
       General  Public License as published by the Free Software Foundation; either version 3 of the License, or
       (at your option) any later version.

SEE ALSO

       freeipmi(7), ipmi-config(8)

       http://www.gnu.org/software/freeipmi/

ipmi-fru 1.6.13                                    2024-03-25                                        IPMI-FRU(8)