Provided by: scalapack-doc_1.5-11_all bug

NAME

       PSORMBR  -  VECT  =  'Q',  PSORMBR  overwrites  the  general  real  distributed  M-by-N matrix sub( C ) =
       C(IC:IC+M-1,JC:JC+N-1) with   SIDE = 'L' SIDE = 'R' TRANS = 'N'

SYNOPSIS

       SUBROUTINE PSORMBR( VECT, SIDE, TRANS, M, N, K, A, IA, JA, DESCA, TAU, C, IC,  JC,  DESCC,  WORK,  LWORK,
                           INFO )

           CHARACTER       SIDE, TRANS, VECT

           INTEGER         IA, IC, INFO, JA, JC, K, LWORK, M, N

           INTEGER         DESCA( * ), DESCC( * )

           REAL            A( * ), C( * ), TAU( * ), WORK( * )

PURPOSE

       If   VECT   =   'Q',  PSORMBR  overwrites  the  general  real  distributed  M-by-N  matrix  sub(  C  )  =
       C(IC:IC+M-1,JC:JC+N-1) with TRANS = 'T':      Q**T * sub( C )       sub( C ) * Q**T

       If VECT = 'P', PSORMBR overwrites sub( C ) with

                            SIDE = 'L'           SIDE = 'R'
       TRANS = 'N':      P * sub( C )          sub( C ) * P
       TRANS = 'T':      P**T * sub( C )       sub( C ) * P**T

       Here Q and P**T are the orthogonal distributed matrices  determined  by  PSGEBRD  when  reducing  a  real
       distributed  matrix  A(IA:*,JA:*) to bidiagonal form: A(IA:*,JA:*) = Q * B * P**T. Q and P**T are defined
       as products of elementary reflectors H(i) and G(i) respectively.

       Let nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Thus nq is the order of the  orthogonal  matrix  Q  or
       P**T that is applied.

       If VECT = 'Q', A(IA:*,JA:*) is assumed to have been an NQ-by-K matrix:
       if nq >= k, Q = H(1) H(2) . . . H(k);
       if nq < k, Q = H(1) H(2) . . . H(nq-1).

       If VECT = 'P', A(IA:*,JA:*) is assumed to have been a K-by-NQ matrix:
       if k < nq, P = G(1) G(2) . . . G(k);
       if k >= nq, P = G(1) G(2) . . . G(nq-1).

       Notes
       =====

       Each  global  data  object  is  described  by  an  associated description vector.  This vector stores the
       information required to establish the mapping between an object element and its corresponding process and
       memory location.

       Let A be a generic term for any 2D block  cyclicly  distributed  array.   Such  a  global  array  has  an
       associated  description  vector  DESCA.  In the following comments, the character _ should be read as "of
       the global array".

       NOTATION        STORED IN      EXPLANATION
       --------------- -------------- -------------------------------------- DTYPE_A(global) DESCA( DTYPE_  )The
       descriptor type.  In this case,
                                      DTYPE_A = 1.
       CTXT_A (global) DESCA( CTXT_ ) The BLACS context handle, indicating
                                      the BLACS process grid A is distribu-
                                      ted over. The context itself is glo-
                                      bal, but the handle (the integer
                                      value) may vary.
       M_A    (global) DESCA( M_ )    The number of rows in the global
                                      array A.
       N_A    (global) DESCA( N_ )    The number of columns in the global
                                      array A.
       MB_A   (global) DESCA( MB_ )   The blocking factor used to distribute
                                      the rows of the array.
       NB_A   (global) DESCA( NB_ )   The blocking factor used to distribute
                                      the columns of the array.
       RSRC_A (global) DESCA( RSRC_ ) The process row over which the first
                                      row  of  the  array  A is distributed.  CSRC_A (global) DESCA( CSRC_ ) The
       process column over which the
                                      first column of the array A is
                                      distributed.
       LLD_A  (local)  DESCA( LLD_ )  The leading dimension of the local
                                      array.  LLD_A >= MAX(1,LOCr(M_A)).

       Let K be the number of rows or columns of a distributed matrix, and assume  that  its  process  grid  has
       dimension p x q.
       LOCr( K ) denotes the number of elements of K that a process would receive if K were distributed over the
       p processes of its process column.
       Similarly,  LOCc(  K  )  denotes  the  number  of  elements  of  K that a process would receive if K were
       distributed over the q processes of its process row.
       The values of LOCr() and LOCc() may be determined via a call to the ScaLAPACK tool function, NUMROC:
               LOCr( M ) = NUMROC( M, MB_A, MYROW, RSRC_A, NPROW ),
               LOCc( N ) = NUMROC( N, NB_A, MYCOL, CSRC_A, NPCOL ).  An upper bound for these quantities may  be
       computed by:
               LOCr( M ) <= ceil( ceil(M/MB_A)/NPROW )*MB_A
               LOCc( N ) <= ceil( ceil(N/NB_A)/NPCOL )*NB_A

ARGUMENTS

       VECT    (global input) CHARACTER
               = 'Q': apply Q or Q**T;
               = 'P': apply P or P**T.

       SIDE    (global input) CHARACTER
               = 'L': apply Q, Q**T, P or P**T from the Left;
               = 'R': apply Q, Q**T, P or P**T from the Right.

       TRANS   (global input) CHARACTER
               = 'N':  No transpose, apply Q or P;
               = 'T':  Transpose, apply Q**T or P**T.

       M       (global input) INTEGER
               The  number  of rows to be operated on i.e the number of rows of the distributed submatrix sub( C
               ). M >= 0.

       N       (global input) INTEGER
               The number of columns to be operated on i.e the number of columns of  the  distributed  submatrix
               sub( C ). N >= 0.

       K       (global input) INTEGER
               If  VECT  = 'Q', the number of columns in the original distributed matrix reduced by PSGEBRD.  If
               VECT = 'P', the number of rows in the original distributed matrix reduced by PSGEBRD.  K >= 0.

       A       (local input) REAL pointer into the local memory
               to an array of dimension (LLD_A,LOCc(JA+MIN(NQ,K)-1)) if VECT='Q', and  (LLD_A,LOCc(JA+NQ-1))  if
               VECT  =  'P'. NQ = M if SIDE = 'L', and NQ = N otherwise. The vectors which define the elementary
               reflectors H(i) and G(i), whose products determine the matrices Q and P, as returned by  PSGEBRD.
               If    VECT    =    'Q',    LLD_A   >=   max(1,LOCr(IA+NQ-1));   if   VECT   =   'P',   LLD_A   >=
               max(1,LOCr(IA+MIN(NQ,K)-1)).

       IA      (global input) INTEGER
               The row index in the global array A indicating the first row of sub( A ).

       JA      (global input) INTEGER
               The column index in the global array A indicating the first column of sub( A ).

       DESCA   (global and local input) INTEGER array of dimension DLEN_.
               The array descriptor for the distributed matrix A.

       TAU     (local input) REAL array, dimension
               LOCc(JA+MIN(NQ,K)-1) if VECT = 'Q', LOCr(IA+MIN(NQ,K)-1) if VECT = 'P', TAU(i) must  contain  the
               scalar  factor of the elementary  reflector H(i) or G(i), which determines Q or P, as returned by
               PDGEBRD in its array argument TAUQ or TAUP.  TAU is tied to the distributed matrix A.

       C       (local input/local output) REAL pointer into the
               local memory to an array of dimension (LLD_C,LOCc(JC+N-1)).  On entry, the local  pieces  of  the
               distributed  matrix  sub(C).   On  exit,  if  VECT='Q',  sub( C ) is overwritten by Q*sub( C ) or
               Q'*sub( C ) or sub( C )*Q' or sub( C )*Q; if VECT='P, sub( C ) is overwritten by P*sub(  C  )  or
               P'*sub( C ) or sub( C )*P or sub( C )*P'.

       IC      (global input) INTEGER
               The row index in the global array C indicating the first row of sub( C ).

       JC      (global input) INTEGER
               The column index in the global array C indicating the first column of sub( C ).

       DESCC   (global and local input) INTEGER array of dimension DLEN_.
               The array descriptor for the distributed matrix C.

       WORK    (local workspace/local output) REAL array,
               dimension (LWORK) On exit, WORK(1) returns the minimal and optimal LWORK.

       LWORK   (local or global input) INTEGER
               The  dimension  of the array WORK.  LWORK is local input and must be at least If SIDE = 'L', NQ =
               M; if( (VECT = 'Q' and NQ >= K) or (VECT <> 'Q' and NQ  >  K)  ),  IAA=IA;  JAA=JA;  MI=M;  NI=N;
               ICC=IC; JCC=JC; else IAA=IA+1; JAA=JA; MI=M-1; NI=N; ICC=IC+1; JCC=JC; end if else if SIDE = 'R',
               NQ  =  N; if( (VECT = 'Q' and NQ >= K) or (VECT <> 'Q' and NQ > K) ), IAA=IA; JAA=JA; MI=M; NI=N;
               ICC=IC; JCC=JC; else IAA=IA; JAA=JA+1; MI=M; NI=N-1; ICC=IC; JCC=JC+1; end if end if

               If VECT = 'Q', If SIDE = 'L', LWORK >= MAX( (NB_A*(NB_A-1))/2, (NqC0 + MpC0)*NB_A ) + NB_A * NB_A
               else if SIDE = 'R', LWORK >= MAX( (NB_A*(NB_A-1))/2,  (  NqC0  +  MAX(  NpA0  +  NUMROC(  NUMROC(
               NI+ICOFFC,  NB_A, 0, 0, NPCOL ), NB_A, 0, 0, LCMQ ), MpC0 ) )*NB_A ) + NB_A * NB_A end if else if
               VECT <> 'Q', if SIDE = 'L', LWORK >= MAX( (MB_A*(MB_A-1))/2, ( MpC0 + MAX( MqA0 + NUMROC( NUMROC(
               MI+IROFFC, MB_A, 0, 0, NPROW ), MB_A, 0, 0, LCMP ), NqC0 ) )*MB_A ) + MB_A * MB_A else if SIDE  =
               'R', LWORK >= MAX( (MB_A*(MB_A-1))/2, (MpC0 + NqC0)*MB_A ) + MB_A * MB_A end if end if

               where LCMP = LCM / NPROW, LCMQ = LCM / NPCOL, with LCM = ICLM( NPROW, NPCOL ),

               IROFFA  =  MOD(  IAA-1,  MB_A  ), ICOFFA = MOD( JAA-1, NB_A ), IAROW = INDXG2P( IAA, MB_A, MYROW,
               RSRC_A, NPROW ), IACOL = INDXG2P( JAA, NB_A, MYCOL, CSRC_A, NPCOL ), MqA0  =  NUMROC(  MI+ICOFFA,
               NB_A, MYCOL, IACOL, NPCOL ), NpA0 = NUMROC( NI+IROFFA, MB_A, MYROW, IAROW, NPROW ),

               IROFFC  =  MOD(  ICC-1,  MB_C  ), ICOFFC = MOD( JCC-1, NB_C ), ICROW = INDXG2P( ICC, MB_C, MYROW,
               RSRC_C, NPROW ), ICCOL = INDXG2P( JCC, NB_C, MYCOL, CSRC_C, NPCOL ), MpC0  =  NUMROC(  MI+IROFFC,
               MB_C, MYROW, ICROW, NPROW ), NqC0 = NUMROC( NI+ICOFFC, NB_C, MYCOL, ICCOL, NPCOL ),

               INDXG2P  and NUMROC are ScaLAPACK tool functions; MYROW, MYCOL, NPROW and NPCOL can be determined
               by calling the subroutine BLACS_GRIDINFO.

               If LWORK = -1, then LWORK is global input and a workspace query  is  assumed;  the  routine  only
               calculates  the minimum and optimal size for all work arrays. Each of these values is returned in
               the first entry of the corresponding work array, and no error message is issued by PXERBLA.

       INFO    (global output) INTEGER
               = 0:  successful exit
               < 0:  If the i-th argument is an array and  the  j-entry  had  an  illegal  value,  then  INFO  =
               -(i*100+j), if the i-th argument is a scalar and had an illegal value, then INFO = -i.

               Alignment requirements ======================

               The  distributed  submatrices A(IA:*, JA:*) and C(IC:IC+M-1,JC:JC+N-1) must verify some alignment
               properties, namely the following expressions should be true:

               If VECT = 'Q', If SIDE = 'L', ( MB_A.EQ.MB_C .AND. IROFFA.EQ.IROFFC  .AND.  IAROW.EQ.ICROW  )  If
               SIDE  =  'R',  (  MB_A.EQ.NB_C  .AND. IROFFA.EQ.ICOFFC ) else If SIDE = 'L', ( MB_A.EQ.MB_C .AND.
               ICOFFA.EQ.IROFFC ) If SIDE = 'R', ( NB_A.EQ.NB_C .AND. ICOFFA.EQ.ICOFFC  .AND.  IACOL.EQ.ICCOL  )
               end if

LAPACK version 1.5                                 12 May 1997                                        PSORMBR(l)