Provided by: python3-xrstools_0.15.0+git20210910+c147919d-2build1_amd64 bug

NAME

       xrstools - XRStools Documentation

       Contents:

INSTALLATION

          • If  you  install  from  a Debian package you can skip the following points, install it , and then go
            directly to the code invocation section

          • Using Git, sources can be retrived with the following command

                git clone https://gitlab.esrf.fr/ixstools/xrstools

          • for a local installation you can use

                python setup.py install --prefix=~/packages

            then to run the code you must do beforehand

                export PYTHONPATH=/home/yourname/packages/lib/python2.7/site-packages
                export PATH=/home/yourname/bin:$PATH

          • To install by creating a virtual environment

                export MYPREFIX=/REPLACE/WITH/YOUR/TARGET
                cd ${MYPREFIX}
                python3 -m venv myenv
                source ${MYPREFIX}/myenv/bin/activate
                pip install pip --upgrade
                pip install setuptools --upgrade

                git clone https://gitlab.esrf.fr/ixstools/xrstools

                cd ${MYPREFIX}/xrstools/
                pip install -r requirements.txt
                python setup.py install

          • Examples can be found in the nonregression directory.

          • For the roi selection tool you need a recent version of pymca installed on your sistem

          • Usage examples can be found in the non regression directory.

CODE INVOCATION

          • Some of the XRStools capabilities can be  accessed  by  invocation  of  the  XRS_swissknife  script,
            providing as input a file in the yaml format.

          • To use the wizard the suggested instruction is

                XRS_wizard  --wroot ~/software/XRStoolsSuperResolution/XRStools/WIZARD/methods/

            the  wroot  argument  tells  where  extra  workflow  can  be found. In the above instruction we give
            workflows in the home source directory. This is practical because the wizard  allows  to  edit  them
            online  and  the  modification will remain in the sources. or to access extra workflows that are not
            coming with the main disribution.

          • Depending on the details of your installation, you have the XRS_swissknife script sitting  somewhere
            in a directory. Check the Installation page to see how to set PYTHONPATH and PATH in case of a local
            installation.

            The following documentation has been generated automatically from the comments found in the code.

   GENERALITIES about XRS_swissknife
   Super Resolution
   to fit optical responses of all the analysers (you selected a ROI for) and the pixel response based on a foil
       scan
       embedded doc :

   to extrapolate to a larger extent the ROIS and the foils scan, thus to cover a larger sample
       embedded doc :

   to calculate the scalar product between a foil scan and a sample, for futher use in the inversion problem
       embedded doc :

   Other features
       e_rois

EXAMPLES EN VRAC

   xrstools imaging example

VIDEOS

       • A Tool to clean the spectra from Compton profile and absorption edge

       • A Tool to define ROI by using NNMF in spectral and spatial domain

DEVELOPERS CORNER

   XRStools.roifinder_and_gui Module
   XRStools.xrs_utilities Module
       XRStools.xrs_utilities.Chi(chi, degrees=True)
              rotation around (1,0,0), pos sense

       XRStools.xrs_utilities.HRcorrect(pzprofile, occupation, q)
              Returns the first order correction to filled 1s, 2s, and 2p Compton profiles.

              Implementation after Holm and Ribberfors (citation ...).

              Args:

                     • pzprofile  (np.array):  Compton  profile  (e.g. tabulated from Biggs) to be corrected (2D
                       matrix).

                     • occupation (list): electron configuration.

                     • q (float or np.array): momentum transfer in [a.u.].

              Returns:
                     asymmetry (np.array):  asymmetries to be added to  the  raw  profiles  (normalized  to  the
                     number of electrons on pz scale)

       XRStools.xrs_utilities.NNMFcost(x, A, F, C, F_up, C_up, n, k, m)
              NNMFcost Returns cost and gradient for NNMF with constraints.

       XRStools.xrs_utilities.NNMFcost_der(x, A, F, C, F_up, C_up, n, k, m)

       XRStools.xrs_utilities.NNMFcost_old(x, A, W, H, W_up, H_up)
              NNMFcost Returns cost and gradient for NNMF with constraints.

       XRStools.xrs_utilities.Omega(omega, degrees=True)
              rotation around (0,0,1), pos sense

       XRStools.xrs_utilities.Phi(phi, degrees=True)
              rotation around (0,1,0), neg sense

       XRStools.xrs_utilities.Rx(chi, degrees=True)
              Rx Rotation matrix for vector rotations around the [1,0,0]-direction.

              Args:

                     • chi   (float) : Angle of rotation.

                     • degrees(bool) : Angle given in radians or degrees.

              Returns:

                     • 3x3 rotation matrix.

       XRStools.xrs_utilities.Ry(phi, degrees=True)
              Ry Rotation matrix for vector rotations around the [0,1,0]-direction.

              Args:

                     • phi   (float) : Angle of rotation.

                     • degrees(bool) : Angle given in radians or degrees.

              Returns:

                     • 3x3 rotation matrix.

       XRStools.xrs_utilities.Rz(omega, degrees=True)
              Rz Rotation matrix for vector rotations around the [0,0,1]-direction.

              Args:

                     • omega (float) : Angle of rotation.

                     • degrees(bool) : Angle given in radians or degrees.

              Returns:

                     • 3x3 rotation matrix.

       XRStools.xrs_utilities.TTsolver1D(el_energy, hkl=[6, 6, 0], crystal='Si', R=1.0, dev=array([- 50., - 49.,
       - 48., - 47., - 46., - 45., - 44., - 43., - 42., - 41., - 40., - 39., - 38., - 37., - 36., - 35., - 34.,
       - 33., - 32., - 31., - 30., - 29., - 28., - 27., - 26., - 25., - 24., - 23., - 22., - 21., - 20., - 19.,
       - 18., - 17., - 16., - 15., - 14., - 13., - 12., - 11., - 10., - 9., - 8., - 7., - 6., - 5., - 4., - 3.,
       - 2., - 1., 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19.,
       20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38., 39., 40.,
       41., 42., 43., 44., 45., 46., 47., 48., 49., 50., 51., 52., 53., 54., 55., 56., 57., 58., 59., 60., 61.,
       62., 63., 64., 65., 66., 67., 68., 69., 70., 71., 72., 73., 74., 75., 76., 77., 78., 79., 80., 81., 82.,
       83., 84., 85., 86., 87., 88., 89., 90., 91., 92., 93., 94., 95., 96., 97., 98., 99., 100., 101., 102.,
       103., 104., 105., 106., 107., 108., 109., 110., 111., 112., 113., 114., 115., 116., 117., 118., 119.,
       120., 121., 122., 123., 124., 125., 126., 127., 128., 129., 130., 131., 132., 133., 134., 135., 136.,
       137., 138., 139., 140., 141., 142., 143., 144., 145., 146., 147., 148., 149.]), alpha=0.0,
       chitable_prefix='/home/christoph/sources/XRStools/data/chitables/chitable_')
              TTsolver Solves the Takagi-Taupin equation for a bent crystal.

              This function is based on a Matlab implementation by S. Huotari of M. Krisch's Fortran programs.

              Args:

                     • el_energy (float): Fixed nominal (working) energy in keV.

                     • hkl (array): Reflection order vector, e.g. [6, 6, 0]

                     • crystal (str): Crystal used (can be silicon 'Si' or 'Ge')

                     • R (float): Crystal bending radius in m.

                     • dev  (np.array):  Deviation  parameter (in arc. seconds) for which the reflectivity curve
                       should be calculated.

                     • alpha (float): Crystal assymetry angle.

              Returns:

                     • refl (np.array): Reflectivity curve.

                     • e (np.array): Deviation from Bragg angle in meV.

                     • dev (np.array): Deviation from Bragg angle in microrad.

       XRStools.xrs_utilities.absCorrection(mu1, mu2, alpha, beta, samthick, geometry='transmission')
              absCorrection

              Calculates absorption correction for given mu1 and mu2.  Multiply the measured spectrum with  this
              correction factor.  This is a translation of Keijo Hamalainen's Matlab function (KH 30.05.96).

              Args

                     • mu1 : np.array  Absorption coefficient for the incident energy in [1/cm].

                     • mu2 : np.array Absorption coefficient for the scattered energy in [1/cm].

                     • alpha : float Incident angle relative to plane normal in [deg].

                     • beta : float  Exit angle relative to plane normal [deg].

                     • samthick : float  Sample thickness in [cm].

                     • geometry  :  string,  optional  Key word for different sample geometries ('transmission',
                       'reflection', 'sphere').  If geometry is  set  to  'sphere',  no  angular  dependence  is
                       assumed.

              Returns

                     • ac : np.array Absorption correction factor. Multiply this with your measured spectrum.

       XRStools.xrs_utilities.abscorr2(mu1, mu2, alpha, beta, samthick)
              Calculates  absorption correction for given mu1 and mu2.  Multiply the measured spectrum with this
              correction factor.

              This is a translation of Keijo Hamalainen's Matlab function (KH 30.05.96).

              Args:

                     • mu1 (np.array): absorption coefficient for the incident energy in [1/cm].

                     • mu2 (np.array): absorption coefficient for the scattered energy in [1/cm].

                     • alpha (float): incident angle relative to plane normal in [deg].

                     • beta (float): exit angle relative to plane normal [deg] (for  transmission  geometry  use
                       beta < 0).

                     • samthick (float): sample thickness in [cm].

              Returns:

                     • ac (np.array): absorption correction factor. Multiply this with your measured spectrum.

       XRStools.xrs_utilities.addch(xold, yold, n, n0=0, errors=None)
              #   ADDCH      Adds  contents  of  given  adjacent  channels  together  #  #            [x2,y2]  =
              addch(x,y,n,n0) #           x  = original  x-scale   (row  or  column  vector)  #            y   =
              original  y-values  (row  or  column vector) #           n  = number of channels to be summed up #
              n0 = offset for adding, default is 0 #           x2 = new x-scale #           y2 = new y-values  #
              #           KH 17.09.1990 #        Modified 29.05.1995 to include offset

       XRStools.xrs_utilities.bidiag_reduction(A)
              function  [U,B,V]=bidiag_reduction(A)  %  [U B V]=bidiag_reduction(A) % Algorithm 6.5-1 in Golub &
              Van Loan, Matrix Computations % Johns Hopkins University Press % Finds an upper bidiagonal  matrix
              B so that A=U*B*V' % with U,V orthogonal.  A is an m x n matrix

       XRStools.xrs_utilities.bootstrapCNNMF(A, F_ini, C_ini, F_up, C_up, Niter)
              bootstrapCNNMF   Constrained  non-negative  matrix  factorization  with  bootstrapping  for  error
              estimates.

       XRStools.xrs_utilities.bootstrapCNNMF_old(A, k, Aerr, F_ini, C_ini, F_up, C_up, Niter=100)
              bootstrapCNNMF  Constrained  non-negative  matrix  factorization  with  bootstrapping  for   error
              estimates.

       XRStools.xrs_utilities.bragg(hkl, e, xtal='Si')
              %  BRAGG   Calculates  Bragg  angle for given reflection in RAD %      output=bangle(hkl,e,xtal) %
              hkl can be a matrix i.e. hkl=[1,0,0 ; 1,1,1]; %      e=energy in keV %      xtal='Si', 'Ge',  etc.
              (check dspace.m) or d0 (Si default) % %      KH 28.09.93 %

       class XRStools.xrs_utilities.bragg_refl(crystal, hkl, alpha=0.0)
              Bases: object

              Dynamical theory of diffraction.

              get_chi(energy, crystal=None, hkl=None)

              get_nff(nff_path=None)

              get_polarization_factor(tth, case='sigma')
                     Calculate polarization factor.

              get_reflectivity(energy, delta_theta, case='sigma')

              get_reflectivity_bent(energy, delta_theta, R)

       XRStools.xrs_utilities.braggd(hkl, e, xtal='Si')
              #   BRAGGD    Calculates   Bragg  angle  for  given  reflection  in  deg  #       Call  BRAGG.M  #
              output=bangle(hkl,e,xtal) #        hkl can be a matrix i.e. hkl=[1,0,0 ; 1,1,1];  #       e=energy
              in keV #      xtal='Si', 'Ge', etc. (check dspace.m) or d0 (Si default) # #      KH 28.09.93

       XRStools.xrs_utilities.cNNMF_chris(A, W_fixed, W_free, maxIter=100, verbose=True)

       XRStools.xrs_utilities.cixsUBfind(x, G, Q_sample, wi, wo, lambdai, lambdao)
              cixsUBfind

       XRStools.xrs_utilities.cixsUBgetAngles_primo(Q)

       XRStools.xrs_utilities.cixsUBgetAngles_secondo(Q)

       XRStools.xrs_utilities.cixsUBgetAngles_terzo(Q)

       XRStools.xrs_utilities.cixsUBgetQ_primo(tthv, tthh, psi)
              returns  the  Q0  given  the  detector  position  (tthv,  tth)  and  th crystal orientation.  This
              orientation is calculated considering :

                 the Bragg condition and the rotation around the G vector :
                        this rotation is defined by psi which is a rotation around G

       XRStools.xrs_utilities.cixsUBgetQ_secondo(tthv, tthh, psi)

       XRStools.xrs_utilities.cixsUBgetQ_terzo(tthv, tthh, psi)

       XRStools.xrs_utilities.cixs_primo(tthv, tthh, psi, anal_braggd=86.5)
              cixs_primo

       XRStools.xrs_utilities.cixs_secondo(tthv, tthh, psi, anal_braggd=86.5)
              cixs_secondo

       XRStools.xrs_utilities.cixs_terzo(tthv, tthh, psi, anal_braggd=86.5)
              cixs_terzo

       XRStools.xrs_utilities.compute_matrix_elements(R1, R2, k, r)

       XRStools.xrs_utilities.con2mat(x, W, H, W_up, H_up)

       XRStools.xrs_utilities.constrained_mf(A, W_ini, W_up, coeff_ini, coeff_up, maxIter=1000, tol=1e-08,
       maxIter_power=1000)
              cfactorizeOffDiaMatrix constrained version of factorizeOffDiaMatrix Returns main  components  from
              an off-diagonal Matrix (energy-loss x angular-departure).

       XRStools.xrs_utilities.constrained_svd(M, U_ini, S_ini, VT_ini, U_up, max_iter=10000, verbose=False)
              constrained_nnmf Approximate singular value decomposition with constraints.

              function [U, S, V] = constrained_svd(M,U_ini,S_ini,V_ini,U_up,max_iter=10000,verbose=False)

       XRStools.xrs_utilities.convertSplitEDF2EDF(foldername)
              converts the old style EDF files (one image for horizontal and one image for vertical chambers) to
              the new style EDF (one single image).

              Arg:

                     foldername (str): Path to folder with all the EDF-files to be
                            converted.

       XRStools.xrs_utilities.convg(x, y, fwhm)
              Convolution  with  Gaussian  x  = x-vector y  = y-vector fwhm = fulll width at half maximum of the
              gaussian with which y is convoluted

       XRStools.xrs_utilities.convtoprim(hklconv)
              convtoprim converts diamond structure reciprocal lattice expressed in conventional lattice vectors
              to primitive one (Helsinki -> Palaiseau conversion) from S. Huotari

       XRStools.xrs_utilities.cshift(w1, th)
              cshift Calculates Compton peak position.

              Args:

                     • w1 (float, array): Incident energy in [keV].

                     • th (float): Scattering angle in [deg].

              Returns:

                     • w2 (foat, array): Energy of Compton peak in [keV].

              Funktion adapted from Keijo Hamalainen.

       XRStools.xrs_utilities.delE_JohannAberration(E, A, R, Theta)
              Calculates the Johann aberration of a spherical analyzer crystal.

              Args:  E     (float):  Working  energy  in  [eV].   A      (float):  Analyzer  aperture  [mm].   R
                     (float): Radius of the Rowland circle [mm].  Theta (float): Analyzer Bragg angle [degree].

              Returns:
                     Johann abberation in [eV].

       XRStools.xrs_utilities.delE_dicedAnalyzerIntrinsic(E, Dw, Theta)
              Calculates the intrinsic energy resolution of a diced crystal analyzer.

              Args:  E      (float): Working energy in [eV].  Dw    (float): Darwin width of the used reflection
                     [microRad].  Theta (float): Analyzer Bragg angle [degree].

              Returns:
                     Intrinsic energy resolution of a perfect analyzer crystal.

       XRStools.xrs_utilities.delE_offRowland(E, z, A, R, Theta)
              Calculates the off-Rowland contribution of a spherical analyzer crystal.

              Args:  E     (float): Working energy in  [eV].   z      (float):  Off-Rowland  distance  [mm].   A
                     (float):  Analyzer aperture [mm].  R     (float): Radius of the Rowland circle [mm].  Theta
                     (float): Analyzer Bragg angle [degree].

              Returns:
                     Off-Rowland contribution in [eV] to the energy resolution.

       XRStools.xrs_utilities.delE_pixelSize(E, p, R, Theta)
              Calculates the pixel size contribution to the resolution function of a diced analyzer crystal.

              Args:  E     (float): Working energy in [eV].  p     (float): Pixel size in [mm].  R      (float):
                     Radius of the Rowland circle [mm].  Theta (float): Analyzer Bragg angle [degree].

              Returns:
                     Pixel size contribution in [eV] to the energy resolution for a diced analyzer crystal.

       XRStools.xrs_utilities.delE_sourceSize(E, s, R, Theta)
              Calculates the source size contribution to the resolution function.

              Args:  E     (float): Working energy in [eV].  s     (float): Source size in [mm].  R     (float):
                     Radius of the Rowland circle [mm].  Theta (float): Analyzer Bragg angle [degree].

              Returns:
                     Source size contribution in [eV] to the energy resolution.

       XRStools.xrs_utilities.delE_stressedCrystal(E, t, v, R, Theta)
              Calculates  the  stress  induced  contribution  to  the  resulution function of a spherically bent
              crystal analyzer.

              Args:  E     (float): Working energy in [eV].  t     (float): Absorption length  in  the  analyzer
                     material  [mm].   v      (float):  Poisson  ratio of the analyzer material.  R     (float):
                     Radius of the Rowland circle [mm].  Theta (float): Analyzer Bragg angle [degree].

              Returns:
                     Stress-induced contribution in [eV] to the energy resolution.

       XRStools.xrs_utilities.diode(current, energy, thickness=0.03)
              diode Calculates the number of photons incident for a Si PIPS diode.

              Args:

                     • current (float): Diode current in [pA].

                     • energy (float): Photon energy in [keV].

                     • thickness (float): Thickness of Si active layer in [cm].

              Returns:

                     • flux (float): Number of photons per second.

              Function adapted from Matlab function by S. Huotari.

       XRStools.xrs_utilities.dspace(hkl=[6, 6, 0], xtal='Si')
              % DSPACE Gives d-spacing for given xtal %     d=dspace(hkl,xtal) %     hkl can be  a  matrix  i.e.
              hkl=[1,0,0  ; 1,1,1]; %     xtal='Si','Ge','LiF','InSb','C','Dia','Li' (case insensitive) %     if
              xtal is number this is user as a d0 % %     KH 28.09.93 %        SH 2005 %

       class XRStools.xrs_utilities.dtxrd(hkl, energy, crystal='Si', asym_angle=0.0, angular_range=[- 0.0005,
       0.0005], angular_step=1e-08)
              Bases: object

              class to hold all things dynamic theory of diffraction.

              get_anomalous_absorption(energy=None)

              get_eta(angular_range, angular_step=1e-08)

              get_extinction_length(energy=None)

              get_reflection_width()

              get_reflectivity(angular_range=None, angular_step=None)

              set_asymmetry(alpha)
                     negative alpha -> more grazing incidence

              set_energy(energy)

              set_hkl(hkl)

       XRStools.xrs_utilities.dtxrd_anomalous_absorption(energy, hkl, alpha=0.0, crystal='Si',
       angular_range=array([- 0.0005]))

       XRStools.xrs_utilities.dtxrd_extinction_length(energy, hkl, alpha=0.0, crystal='Si')

       XRStools.xrs_utilities.dtxrd_reflectivity(energy, hkl, alpha=0.0, crystal='Si', angular_range=array([-
       0.0005]))

       XRStools.xrs_utilities.e2pz(w1, w2, th)
              Calculates the momentum scale and the relativistic Compton cross section correction  according  to
              P. Holm, PRA 37, 3706 (1988).

              This function is translated from Keijo Hamalainen's Matlab implementation (KH 29.05.96).

              Args:

                     • w1 (float or np.array): incident energy in [keV]

                     • w2 (float or np.array): scattered energy in [keV]

                     • th (float): scattering angle two theta in [deg]

              returns:

                     • pz (float or np.array): momentum scale in [a.u.]

                     • cf  (float  or  np.array):  cross  section  correction  factor  such  that:  J(pz) = cf *
                       d^2(sigma)/d(w2)*d(Omega) [barn/atom/keV/srad]

       XRStools.xrs_utilities.edfread(filename)
              reads edf-file with filename "filename" OUTPUT:    data = 256x256 numpy array

       XRStools.xrs_utilities.edfread_test(filename)
              reads edf-file with filename "filename" OUTPUT:    data = 256x256 numpy array

              here   is   how   i   opened   the   HH   data:   data   =   np.fromfile(f,np.int32)    image    =
              np.reshape(data,(dim,dim))

       XRStools.xrs_utilities.element(z)
              Converts atomic number into string of the element symbol and vice versa.

              Returns  atomic  number  of  given  element,  if  z is a string of the element symbol or string of
              element symbol of given atomic number z.

              Args:

                     • z (string or int): string of the element symbol or atomic number.

              Returns:

                     • Z (string or int): string of the element symbol or atomic number.

       XRStools.xrs_utilities.energy(d, ba)
              % ENERGY  Calculates energy corrresponing to Bragg angle for given  d-spacing  %          function
              e=energy(dspace,bragg_angle)  %  %       dspace  for  reflection  %       bragg_angle  in  DEG % %
              KH 28.09.93

       XRStools.xrs_utilities.energy_monoangle(angle, d=1.6374176589984608)
              % ENERGY  Calculates energy corrresponing to Bragg angle for given  d-spacing  %          function
              e=energy(dspace,bragg_angle)  % %         dspace for reflection (defaulf for Si(311) reflection) %
              bragg_angle in DEG % %         KH 28.09.93 %

       XRStools.xrs_utilities.fermi(rs)
              fermi Calculates the plasmon energy (in eV), Fermi energy (in eV), Fermi momentum (in  a.u.),  and
              critical plasmon cut-off vector (in a.u.).

              Args:

                     • rs (float): electron separation parameter

              Returns:

                     • wp (float): plasmon energy (in eV)

                     • ef (float): Fermi energy (in eV)

                     • kf (float): Fermi momentum (in a.u.)

                     • kc (float): critical plasmon cut-off vector (in a.u.)

              Based on Matlab function from A. Soininen.

       XRStools.xrs_utilities.find_center_of_mass(x, y)
              Returns the center of mass (first moment) for the given curve y(x)

       XRStools.xrs_utilities.find_diag_angles(q, x0, U, B, Lab, beam_in, lambdai, lambdao, tol=1e-08,
       method='BFGS')
              find_diag_angles Finds the FOURC spectrometer and sample angles for a desired q.

              Args:

                     • q (array): Desired momentum transfer in Lab coordinates.

                     • x0 (list): Guesses for the angles (tthv, tthh, chi, phi, omega).

                     • U (array): 3x3 U-matrix Lab-to-sample transformation.

                     • B (array): 3x3 B-matrix reciprocal lattice to absolute units transformation.

                     • lambdai (float): Incident x-ray wavelength in Angstrom.

                     • lambdao (float): Scattered x-ray wavelength in Angstrom.

                     • tol (float): Toleranz for minimization (see scipy.optimize.minimize)

                     • method (str): Method for minimization (see scipy.optimize.minimize)

              Returns:

                     • ans (array): tthv, tthh, phi, chi, omega

       XRStools.xrs_utilities.fwhm(x, y)
              finds  full  width  at  half  maximum  of the curve y vs. x returns f  = FWHM x0 = position of the
              maximum

       XRStools.xrs_utilities.gauss(x, x0, fwhm)

       XRStools.xrs_utilities.get_UB_Q(tthv, tthh, phi, chi, omega, **kwargs)
              get_UB_Q Returns the momentum transfer and scattering vectors for  given  FOURC  spectrometer  and
              sample angles. U-, B-matrices and incident/scattered wavelength are passed as keyword-arguments.

              Args:

                     • tthv (float): Spectrometer vertical 2Theta angle.

                     • tthh (float): Spectrometer horizontal 2Theta angle.

                     • chi (float): Sample rotation around x-direction.

                     • phi (float): Sample rotation around y-direction.

                     • omega (float): Sample rotation around z-direction.

                     •

                       kwargs (dict): Dictionary with key-word arguments:

                              • kwargs['U'] (array): 3x3 U-matrix Lab-to-sample transformation.

                              • kwargs['B']   (array):   3x3  B-matrix  reciprocal  lattice  to  absolute  units
                                transformation.

                              • kwargs['lambdai'] (float): Incident x-ray wavelength in Angstrom.

                              • kwargs['lambdao'] (float): Scattered x-ray wavelength in Angstrom.

              Returns:

                     • Q_sample  (array): Momentum transfer in sample coordinates.

                     • Ki_sample (array): Incident beam direction in sample coordinates.

                     • Ko_sample (array): Scattered beam direction in sample coordinates.

       XRStools.xrs_utilities.get_gnuplot_rgb(start=None, end=None, length=None)
              get_gnuplot_rgb Prints out a progression of RGB hex-keys to use in Gnuplot.

              Args:

                     • start (array): RGB code to start from (must be numbers out of [0,1]).

                     • end   (array): RGB code to end at (must be numbers out of [0,1]).

                     • length  (int): How many colors to print out.

       XRStools.xrs_utilities.get_num_of_MD_steps(time_ps, time_step)
              Calculates the number of steps in an MD simulation for a desired time (in ps) and given step  size
              (in a.u.)

              Args:  time_ps   (float): Desired time span (ps).  time_step (float): Chosen time step (a.u.).

              Returns:
                     The number of steps required to span the desired time span.

       XRStools.xrs_utilities.getpenetrationdepth(energy, formulas, concentrations, densities)
              returns  the  penetration  depth of a mixture of chemical formulas with certain concentrations and
              densities

       XRStools.xrs_utilities.gettransmission(energy, formulas, concentrations, densities, thickness)
              returns the transmission through a sample composed of chemical  formulas  with  certain  densities
              mixed to certain concentrations, and a thickness

       XRStools.xrs_utilities.hex2rgb(hex_val)

       XRStools.xrs_utilities.hlike_Rwfn(n, l, r, Z)
              hlike_Rwfn Returns an array with the radial part of a hydrogen-like wave function.

              Args:

                     • n (integer): main quantum number n

                     • l (integer): orbitalquantum number l

                     • r (array): vector of radii on which the function should be evaluated

                     • Z (float): effective nuclear charge

       XRStools.xrs_utilities.householder(b, k)
              function  H  =  householder(b, k) % H = householder(b, k) % Atkinson, Section 9.3, p. 611 % b is a
              column vector, k an index < length(b) % Constructs a matrix H that annihilates entries  %  in  the
              product H*b below index k

              % $Id: householder.m,v 1.1 2008-01-16 15:33:30 mike Exp $ % M. M. Sussman

       XRStools.xrs_utilities.interpolate_M(xc, xi, yi, i0)
                 Linear  interpolation  scheme  after  Martin  Sundermann  that conserves the absolute number of
                 counts.

                 ONLY WORKS FOR EQUALLY/EVENLY SPACED XC, XI!

                 Args:  xc (np.array): The  x-coordinates  of  the  interpolated  values.   xi  (np.array):  The
                        x-coordinates  of the data points, must be increasing.  yi (np.array): The y-coordinates
                        of the data points, same length as xp.  i0 (np.array): Normalization values for the data
                        points, same length as xp.

                 Returns:
                        ic (np.array): The interpolated and normalized data points.

              from scipy.interpolate import Rbf x = arange(20) d = zeros(len(x)) d[10] = 1 xc = arange(0.5,19.5)
              rbfi = Rbf(x, d) di = rbfi(xc)

       XRStools.xrs_utilities.is_allowed_refl_fcc(H)
              is_allowed_refl_fcc Check if given reflection is allowed for a FCC lattice.

              Args:

                     • H (array, list, tuple): H=[h,k,l]

              Returns:

                     • boolean

       XRStools.xrs_utilities.lindhard_pol(q, w, rs=3.93, use_corr=False, lifetime=0.28)
              lindhard_pol Calculates the Lindhard polarizability function (RPA) for certain q (a.u.), w  (a.u.)
              and rs (a.u.).

              Args:

                     • q (float): momentum transfer (in a.u.)

                     • w (float): energy (in a.u.)

                     • rs (float): electron parameter

                     • use_corr  (boolean):  if  True, uses Bernardo's calculation for n(k) instead of the Fermi
                       function.

                     • lifetime (float): life time (default is 0.28 eV for Na).

              Based on Matlab function by S. Huotari.

       XRStools.xrs_utilities.makeprofile(element,
       filename='/usr/lib/python3/dist-packages/XRStools/resources/data/ComptonProfiles.dat', E0=9.69, tth=35.0,
       correctasym=None)
              takes the profiles from 'makepzprofile()', converts them onto eloss scale and normalizes  them  to
              S(q,w)  [1/eV]  input:  element   =  element  symbol  (e.g. 'Si', 'Al', etc.)  filename = path and
              filename to tabulated profiles E0       = scattering energy  [keV]  tth       =  scattering  angle
              [deg]  returns: enscale = energy loss scale J = total CP C = only core contribution to CP V = only
              valence contribution to CP q = momentum transfer [a.u.]

       XRStools.xrs_utilities.makeprofile_comp(formula,
       filename='/usr/lib/python3/dist-packages/XRStools/resources/data/ComptonProfiles.dat', E0=9.69, tth=35,
       correctasym=None)
              returns the compton profile of a chemical compound with formula 'formula' input: formula =  string
              of  a  chemical  formula (e.g. 'SiO2', 'Ba8Si46', etc.)  filename = path and filename to tabulated
              profiles E0       = scattering energy [keV] tth      = scattering angle  [deg]  returns:  eloss  =
              energy  loss  scale J = total CP C = only core contribution to CP V = only valence contribution to
              CP q = momentum transfer [a.u.]

       XRStools.xrs_utilities.makeprofile_compds(formulas, concentrations=None,
       filename='/usr/lib/python3/dist-packages/XRStools/resources/data/ComptonProfiles.dat', E0=9.69, tth=35.0,
       correctasym=None)
              returns sum of compton  profiles  from  a  lost  of  chemical  compounds  weighted  by  the  given
              concentration

       XRStools.xrs_utilities.makepzprofile(element,
       filename='/usr/lib/python3/dist-packages/XRStools/resources/data/ComptonProfiles.dat')
              constructs compton profiles of element 'element' on pz-scale (-100:100 a.u.) from the Biggs tables
              provided in 'filename'

              input:

                     • element   = element symbol (e.g. 'Si', 'Al', etc.)

                     • filename  = path and filename to tabulated profiles

              returns:

                     • pzprofile  =  numpy array of the CP: *  1. column: pz-scale *  2. ... n. columns: compton
                       profile of nth shell * binden     = binding energies of shells * occupation =  number  of
                       electrons in the according shells

       XRStools.xrs_utilities.mat2con(W, H, W_up, H_up)

       XRStools.xrs_utilities.mat2vec(F, C, F_up, C_up, n, k, m)

       class XRStools.xrs_utilities.maxipix_det(name, spot_arrangement)
              Bases: object

              Class to store some useful values from the detectors used. To be used for arranging the ROIs.

              get_det_name()

              get_pixel_range()

       XRStools.xrs_utilities.momtrans_au(e1, e2, tth)
              Calculates  the  momentum  transfer  in  atomic  units  input:  e1  = incident energy  [keV] e2  =
              scattered energy [keV] tth = scattering angle  [deg]  returns:  q    =  momentum  transfer  [a.u.]
              (corresponding to sin(th)/lambda)

       XRStools.xrs_utilities.momtrans_inva(e1, e2, tth)
              Calculates  the  momentum  transfer  in inverse angstrom input: e1  = incident energy  [keV] e2  =
              scattered energy [keV] tth = scattering angle  [deg]  returns:  q    =  momentum  transfer  [a.u.]
              (corresponding to sin(th)/lambda)

       XRStools.xrs_utilities.mpr(energy, compound)
              Calculates the photoelectric, elastic, and inelastic absorption of a chemical compound.

              Calculates the photoelectric, elastic, and inelastic absorption of a chemical compound.

              Args:

                     • energy (np.array): energy scale in [keV].

                     • compound (string): chemical sum formula (e.g. 'SiO2')

              Returns:

                     • murho (np.array): absorption coefficient normalized by the density.

                     • rho (float): density in UNITS?

                     • m (float): atomic mass in UNITS?

       XRStools.xrs_utilities.mpr_compds(energy, formulas, concentrations, E0, rho_formu)
              Calculates the photoelectric, elastic, and inelastic absorption of a mix of compounds.

              Returns the photoelectric absorption for a sum of different chemical compounds.

              Args:

                     • energy (np.array): energy scale in [keV].

                     • formulas (list of strings): list of chemical sum formulas

              Returns:

                     • murho (np.array): absorption coefficient normalized by the density.

                     • rho (float): density in UNITS?

                     • m (float): atomic mass in UNITS?

       XRStools.xrs_utilities.myprho(energy, Z,
       logtablefile='/usr/lib/python3/dist-packages/XRStools/resources/data/logtable.dat')
              Calculates the photoelectric, elastic, and inelastic absorption of an element Z

              Calculates  the photelectric , elastic, and inelastic absorption of an element Z.  Z can be atomic
              number or element symbol.

              Args:

                     • energy (np.array): energy scale in [keV].

                     • Z (string or int): atomic number or string of element symbol.

              Returns:

                     • murho (np.array): absorption coefficient normalized by the density.

                     • rho (float): density in UNITS?

                     • m (float): atomic mass in UNITS?

       XRStools.xrs_utilities.nonzeroavg(y=None)

       XRStools.xrs_utilities.odefctn(y, t, abb0, abb1, abb7, abb8, lex, sgbeta, y0, c1)
              #%    [T,Y] = ODE23(ODEFUN,TSPAN,Y0,OPTIONS,P1,P2,...)  passes  the  additional  #%     parameters
              P1,P2,...  to  the  ODE  function as ODEFUN(T,Y,P1,P2...), and to #%    all functions specified in
              OPTIONS. Use OPTIONS = [] as a place holder if #%    no options are set.

       XRStools.xrs_utilities.odefctn_CN(yCN, t, abb0, abb1, abb7, abb8N, lex, sgbeta, y0, c1)

       XRStools.xrs_utilities.parseformula(formula)
              Parses a chemical sum formula.

              Parses the constituing elements and stoichiometries from a given chemical sum formula.

              Args:

                     • formula (string): string of a chemical formula (e.g. 'SiO2', 'Ba8Si46', etc.)

              Returns:

                     • elements (list): list of strings of constituting elemental symbols.

                     • stoichiometries  (list):  list  of  according  stoichiometries  in  the  same  order   as
                       'elements'.

       XRStools.xrs_utilities.plotpenetrationdepth(energy, formulas, concentrations, densities)
              opens  a  plot  window  of  the  penetration  depth of a mixture of chemical formulas with certain
              concentrations and densities plotted along the given energy vector

       XRStools.xrs_utilities.plottransmission(energy, formulas, concentrations, densities, thickness)
              opens a plot with the transmission plotted along the given energy vector

       XRStools.xrs_utilities.primtoconv(hklprim)
              primtoconv converts diamond structure reciprocal lattice  expressed  in  primitive  basis  to  the
              conventional basis (Palaiseau -> Helsinki conversion) from S. Huotari

       XRStools.xrs_utilities.pz2e1(w2, pz, th)
              Calculates the incident energy for a specific scattered photon and momentum value.

              Returns  the  incident  energy  for  a given photon energy and scattering angle.  This function is
              translated from Keijo Hamalainen's Matlab implementation (KH 29.05.96).

              Args:

                     • w2 (float): scattered photon energy in [keV]

                     • pz (np.array): pz scale in [a.u.]

                     • th (float): scattering angle two theta in [deg]

              Returns:

                     • w1 (np.array): incident energy in [keV]

       XRStools.xrs_utilities.read_dft_wfn(element, n, l, spin=None,
       directory='/usr/lib/python3/dist-packages/XRStools/resources/data')
              read_dft_wfn Parses radial parts of wavefunctions.

              Args:

                     • element (str): Element symbol.

                     • n (int): Main quantum number.

                     • l (int): Orbital quantum number.

                     • spin (str): Which spin channel, default is average over up and down.

                     • directory (str): Path to directory where the wavefunctions can be found.

              Returns:

                     • r (np.array): radius

                     • wfn (np.array):

       XRStools.xrs_utilities.readbiggsdata(filename, element)
              Reads Hartree-Fock Profile of element 'element' from values tabulated by Biggs et al. (Atomic Data
              and  Nuclear  Data  Tables  16,  201-309  (1975))  as   provided   by   the   DABAX   library   (‐
              http://ftp.esrf.eu/pub/scisoft/xop2.3/DabaxFiles/ComptonProfiles.dat).   input: filename = path to
              the ComptonProfiles.dat file (the file should be distributed with this package) element  =  string
              of element name returns:

                 •

                   data = the data for the according element as in the file:

                          • #UD  Columns:

                          • #UD  col1: pz in atomic units

                          • #UD  col2: Total compton profile (sum over the atomic electrons

                          • #UD  col3,...coln: Compton profile for the individual sub-shells

                 • occupation = occupation number of the according shells

                 • bindingen  = binding energies of the accorting shells

                 • colnames   = strings of column names as used in the file

       XRStools.xrs_utilities.readfio(prefix, scannumber, repnumber=0)
              if  repnumber  =  0:  reads a spectra-file (name: prefix_scannumber.fio) if repnumber > 1: reads a
              spectra-file (name: prefix_scannumber_rrepnumber.fio)

       XRStools.xrs_utilities.readp01image(filename)
              reads a detector file from PetraIII beamline P01

       XRStools.xrs_utilities.readp01scan(prefix, scannumber)
              reads a whole scan from PetraIII beamline P01 (experimental)

       XRStools.xrs_utilities.readp01scan_rep(prefix, scannumber, repetition)
              reads a whole scan with repititions from PetraIII beamline P01 (experimental)

       XRStools.xrs_utilities.savitzky_golay(y, window_size, order, deriv=0, rate=1)
              Smooth (and optionally differentiate) data  with  a  Savitzky-Golay  filter.   The  Savitzky-Golay
              filter  removes  high  frequency noise from data.  It has the advantage of preserving the original
              shape and features of the signal better than other types of filtering approaches, such  as  moving
              averages techniques.

              Parameters:

                     • y : array_like, shape (N,) the values of the time history of the signal.

                     • window_size : int the length of the window. Must be an odd integer number.

                     • order  :  int  the  order  of  the  polynomial  used in the filtering.  Must be less then
                       window_size - 1.

                     • deriv: int the order of the derivative to compute (default = 0 means only smoothing)

              Returns

                     • ys : ndarray, shape (N) the smoothed signal (or it's n-th derivative).

              Notes: The Savitzky-Golay is a type of low-pass filter, particularly suited  for  smoothing  noisy
                     data.  The main idea behind this approach is to make for each point a least-square fit with
                     a polynomial of high order over a odd-sized window centered at the point.

              Examples

                 t = np.linspace(-4, 4, 500)
                 y = np.exp( -t**2 ) + np.random.normal(0, 0.05, t.shape)
                 ysg = savitzky_golay(y, window_size=31, order=4)
                 import matplotlib.pyplot as plt
                 plt.plot(t, y, label='Noisy signal')
                 plt.plot(t, np.exp(-t**2), 'k', lw=1.5, label='Original signal')
                 plt.plot(t, ysg, 'r', label='Filtered signal')
                 plt.legend()
                 plt.show()

              References ::

              [1]  A. Savitzky, M. J. E. Golay, Smoothing  and  Differentiation  of  Data  by  Simplified  Least
                   Squares Procedures. Analytical Chemistry, 1964, 36 (8), pp 1627-1639.

              [2]  Numerical  Recipes  3rd  Edition: The Art of Scientific Computing W.H. Press, S.A. Teukolsky,
                   W.T. Vetterling, B.P. Flannery Cambridge University Press ISBN-13: 9780521880688

       XRStools.xrs_utilities.sgolay2d(z, window_size, order, derivative=None)

       XRStools.xrs_utilities.sigmainc(Z, energy,
       logtablefile='/usr/lib/python3/dist-packages/XRStools/resources/data/logtable.dat')
              sigmainc Calculates the Incoherent Scattering Cross Section in cm^2/g using Log-Log Fit.

              Args:

                     • z (int or string): Element number or elements symbol.

                     • energy (float or array): Energy (can be number or vector)

              Returns:

                     • tau (float or array): Photoelectric cross section in [cm**2/g]

              Adapted from original Matlab function of Keijo Hamalainen.

       XRStools.xrs_utilities.specread(filename, nscan)
              reads scan "nscan" from SPEC-file "filename"

              INPUT:

                     • filename = string with the SPEC-file name

                     • nscan    = number (int) of desired scan

              OUTPUT:

                     • data     =

                     • motors   =

                     • counters = dictionary

       XRStools.xrs_utilities.spline2(x, y, x2)
              Extrapolates the smaller and larger valuea as a constant

       XRStools.xrs_utilities.split_hdf5_address(dataadress)

       XRStools.xrs_utilities.stiff_compl_matrix_Si(e1, e2, e3, ansys=False)
              stiff_compl_matrix_Si Returns stiffnes and compliance tensor of Si for a given orientation.

              Args:

                     • e1 (np.array): unit vector normal to crystal surface

                     • e2 (np.array): unit vector crystal surface

                     • e3 (np.array): unit vector orthogonal to e2

              Returns:

                     • S (np.array): compliance tensor in new coordinate system

                     • C (np.array): stiffnes tensor in new coordinate system

                     • E (np.array): Young's modulus in [GPa]

                     • G (np.array): shear modulus in [GPa]

                     • nu (np.array): Poisson ratio

              Copied from S.I. of L. Zhang et al. "Anisotropic elasticity of silicon and its application to  the
              modelling of X-ray optics."  J. Synchrotron Rad. 21, no. 3 (2014): 507-517.

       XRStools.xrs_utilities.sumx(A)
              Short-hand  command  to  sum  over  1st dimension of a N-D matrix (N>2) and to squeeze it to N-1-D
              matrix.

       XRStools.xrs_utilities.svd_my(M, maxiter=100, eta=0.1)

       XRStools.xrs_utilities.taupgen(e, hkl=[6, 6, 0], crystals='Si', R=1.0, dev=array([- 50., - 49., - 48., -
       47., - 46., - 45., - 44., - 43., - 42., - 41., - 40., - 39., - 38., - 37., - 36., - 35., - 34., - 33., -
       32., - 31., - 30., - 29., - 28., - 27., - 26., - 25., - 24., - 23., - 22., - 21., - 20., - 19., - 18., -
       17., - 16., - 15., - 14., - 13., - 12., - 11., - 10., - 9., - 8., - 7., - 6., - 5., - 4., - 3., - 2., -
       1., 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21.,
       22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38., 39., 40., 41., 42.,
       43., 44., 45., 46., 47., 48., 49., 50., 51., 52., 53., 54., 55., 56., 57., 58., 59., 60., 61., 62., 63.,
       64., 65., 66., 67., 68., 69., 70., 71., 72., 73., 74., 75., 76., 77., 78., 79., 80., 81., 82., 83., 84.,
       85., 86., 87., 88., 89., 90., 91., 92., 93., 94., 95., 96., 97., 98., 99., 100., 101., 102., 103., 104.,
       105., 106., 107., 108., 109., 110., 111., 112., 113., 114., 115., 116., 117., 118., 119., 120., 121.,
       122., 123., 124., 125., 126., 127., 128., 129., 130., 131., 132., 133., 134., 135., 136., 137., 138.,
       139., 140., 141., 142., 143., 144., 145., 146., 147., 148., 149.]), alpha=0.0)
              %  TAUPGEN           Calculates  the  reflectivity  curves  of  bent   crystals   %   %   function
              [refl,e,dev]=taupgen_new(e,hkl,crystals,R,dev,alpha); % %              e = fixed nominal energy in
              keV  %             hkl  = reflection order vector, e.g. [1 1 1] %       crystals = crystal string,
              e.g. 'si' or 'ge' %              R =  bending  radius  in  meters  %             dev  =  deviation
              parameter  for  which  the  %                   curve  will  be  calculated  (vector) (optional) %
              alpha = asymmetry angle % based on a FORTRAN program of Michael Krisch % Translitterated to Matlab
              by Simo Huotari 2006, 2007 % Is far away from being good matlab writing - mostly copy&paste from %
              the fortran routines. Frankly, my dear, I don't give a damn.  % Complaints -> /dev/null

       XRStools.xrs_utilities.taupgen_amplitude(e, hkl=[6, 6, 0], crystals='Si', R=1.0, dev=array([- 50., - 49.,
       - 48., - 47., - 46., - 45., - 44., - 43., - 42., - 41., - 40., - 39., - 38., - 37., - 36., - 35., - 34.,
       - 33., - 32., - 31., - 30., - 29., - 28., - 27., - 26., - 25., - 24., - 23., - 22., - 21., - 20., - 19.,
       - 18., - 17., - 16., - 15., - 14., - 13., - 12., - 11., - 10., - 9., - 8., - 7., - 6., - 5., - 4., - 3.,
       - 2., - 1., 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19.,
       20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38., 39., 40.,
       41., 42., 43., 44., 45., 46., 47., 48., 49., 50., 51., 52., 53., 54., 55., 56., 57., 58., 59., 60., 61.,
       62., 63., 64., 65., 66., 67., 68., 69., 70., 71., 72., 73., 74., 75., 76., 77., 78., 79., 80., 81., 82.,
       83., 84., 85., 86., 87., 88., 89., 90., 91., 92., 93., 94., 95., 96., 97., 98., 99., 100., 101., 102.,
       103., 104., 105., 106., 107., 108., 109., 110., 111., 112., 113., 114., 115., 116., 117., 118., 119.,
       120., 121., 122., 123., 124., 125., 126., 127., 128., 129., 130., 131., 132., 133., 134., 135., 136.,
       137., 138., 139., 140., 141., 142., 143., 144., 145., 146., 147., 148., 149.]), alpha=0.0)
              %  TAUPGEN           Calculates  the  reflectivity  curves  of  bent   crystals   %   %   function
              [refl,e,dev]=taupgen_new(e,hkl,crystals,R,dev,alpha); % %              e = fixed nominal energy in
              keV  %             hkl  = reflection order vector, e.g. [1 1 1] %       crystals = crystal string,
              e.g. 'si' or 'ge' %              R =  bending  radius  in  meters  %             dev  =  deviation
              parameter  for  which  the  %                   curve  will  be  calculated  (vector) (optional) %
              alpha = asymmetry angle % based on a FORTRAN program of Michael Krisch % Translitterated to Matlab
              by Simo Huotari 2006, 2007 % Is far away from being good matlab writing - mostly copy&paste from %
              the fortran routines. Frankly, my dear, I don't give a damn.  % Complaints -> /dev/null

       XRStools.xrs_utilities.tauphoto(Z, energy,
       logtablefile='/usr/lib/python3/dist-packages/XRStools/resources/data/logtable.dat')
              tauphoto Calculates Photoelectric Cross Section in cm^2/g using Log-Log Fit.

              Args:

                     • z (int or string): Element number or elements symbol.

                     • energy (float or array): Energy (can be number or vector)

              Returns:

                     • tau (float or array): Photoelectric cross section in [cm**2/g]

              Adapted from original Matlab function of Keijo Hamalainen.

       XRStools.xrs_utilities.unconstrained_mf(A, numComp=3, maxIter=1000, tol=1e-08)
              unconstrained_mf  Returns  main  components   from   an   off-diagonal   Matrix   (energy-loss   x
              angular-departure), using the power method iteratively on the different main components.

       XRStools.xrs_utilities.vangle(v1, v2)
              vangle Calculates the angle between two cartesian vectors v1 and v2 in degrees.

              Args:

                     • v1 (np.array): first vector.

                     • v2 (np.array): second vector.

              Returns:

                     • th (float): angle between first and second vector.

              Function by S. Huotari, adopted for Python.

       XRStools.xrs_utilities.vec2mat(x, F, C, F_up, C_up, n, k, m)

       XRStools.xrs_utilities.vrot(v, vaxis, phi)
              vrot Rotates a vector around a given axis.

              Args:

                     • v (np.array): vector to be rotated

                     • vaxis (np.array): rotation axis

                     • phi (float): angle [deg] respecting the right-hand rule

              Returns:

                     • v2 (np.array): new rotated vector

              Function by S. Huotari (2007) adopted to Python.

       XRStools.xrs_utilities.vrot2(vector1, vector2, angle)
              rotMatrix Rotate vector1 around vector2 by an angle.

       XRStools.xrs_utilities.xas_fluo_correct(ene, mu, formula, fluo_ene, edge_ene, angin, angout)
              xas_fluo_correct   Fluorescence   yield  over-absorption  correction  as  in  Larch/Athena.   see:
              https://www3.aps.anl.gov/haskel/FLUO/Fluo-manual.pdf

              Args:

                     • ene (np.array): energy axis in [keV]

                     • mu (np.array): measured fluorescence spectrum

                     • formula (str): chemical sum formulas (e.g. 'SiO2')

                     • fluo_ene (float): energy in keV of main fluorescence line

                     • edge_ene (float): edge energy in [keV]

                     • angin (float): incidence angle (relative to sample normal) [deg.]

                     • angout (float): exit angle (relative to sample normal) [deg.]

              Returns:

                     • ene (np.array): energy axis in [keV]

                     • mu_corr (np.array): corrected fluorescence spectrum

   XRStools.XRStool Package
   XRStools.xrs_calctools Module
       XRStools.xrs_calctools.alterGROatomNames(filename, oldName, newName)

       XRStools.xrs_calctools.axsfTrajParser(filename)
              axsfTrajParser

       XRStools.xrs_calctools.beta(a, b, size=None)
              Draw samples from a Beta distribution.

              The Beta distribution is a special case of the Dirichlet distribution, and is related to the Gamma
              distribution.  It has the probability distribution function

                                    f(x; a,b) = \frac{1}{B(\alpha, \beta)} x^{\alpha - 1}
              (1 - x)^{\beta - 1},

              where the normalization, B, is the beta function,

                                          B(\alpha, \beta) = \int_0^1 t^{\alpha - 1}
              (1 - t)^{\beta - 1} dt.

              It is often seen in Bayesian inference and order statistics.

              NOTE:
                 New code should use the beta method  of  a  default_rng()  instance  instead;  please  see  the
                 random-quick-start.

              a      float or array_like of floats Alpha, positive (>0).

              b      float or array_like of floats Beta, positive (>0).

              size   int  or tuple of ints, optional Output shape.  If the given shape is, e.g., (m, n, k), then
                     m * n * k samples are drawn.  If size is None (default), a single value is  returned  if  a
                     and b are both scalars.  Otherwise, np.broadcast(a, b).size samples are drawn.

              out    ndarray or scalar Drawn samples from the parameterized beta distribution.

              Generator.beta: which should be used for new code.

       XRStools.xrs_calctools.binomial(n, p, size=None)
              Draw samples from a binomial distribution.

              Samples  are  drawn  from  a  binomial  distribution  with  specified  parameters,  n trials and p
              probability of success where n an integer >= 0 and p is in the interval [0,1]. (n may be input  as
              a float, but it is truncated to an integer in use)

              NOTE:
                 New  code  should  use  the binomial method of a default_rng() instance instead; please see the
                 random-quick-start.

              n      int or array_like of ints Parameter of the distribution, >= 0. Floats  are  also  accepted,
                     but they will be truncated to integers.

              p      float or array_like of floats Parameter of the distribution, >= 0 and <=1.

              size   int  or tuple of ints, optional Output shape.  If the given shape is, e.g., (m, n, k), then
                     m * n * k samples are drawn.  If size is None (default), a single value is  returned  if  n
                     and p are both scalars.  Otherwise, np.broadcast(n, p).size samples are drawn.

              out    ndarray  or  scalar  Drawn samples from the parameterized binomial distribution, where each
                     sample is equal to the number of successes over the n trials.

              scipy.stats.binom
                     probability density function, distribution or cumulative density function, etc.

              Generator.binomial: which should be used for new code.

              The probability density for the binomial distribution is

                                              P(N) = \binom{n}{N}p^N(1-p)^{n-N},

              where n is the number of trials, p is  the  probability  of  success,  and  N  is  the  number  of
              successes.

              When  estimating  the standard error of a proportion in a population by using a random sample, the
              normal distribution works well unless the  product  p*n  <=5,  where  p  =  population  proportion
              estimate,  and n = number of samples, in which case the binomial distribution is used instead. For
              example, a sample of 15 people shows 4 who are left handed, and 11 who are right handed. Then p  =
              4/15 = 27%. 0.27*15 = 4, so the binomial distribution should be used in this case.

       [1]  Dalgaard, Peter, "Introductory Statistics with R", Springer-Verlag, 2002.

       [2]  Glantz, Stanton A. "Primer of Biostatistics.", McGraw-Hill, Fifth Edition, 2002.

       [3]  Lentner, Marvin, "Elementary Applied Statistics", Bogden and Quigley, 1972.

       [4]  Weisstein,   Eric   W.   "Binomial   Distribution."   From   MathWorld--A   Wolfram   Web  Resource.
            http://mathworld.wolfram.com/BinomialDistribution.html

       [5]  Wikipedia, "Binomial distribution", https://en.wikipedia.org/wiki/Binomial_distribution

            Draw samples from the distribution:

            >>> n, p = 10, .5  # number of trials, probability of each trial
            >>> s = np.random.binomial(n, p, 1000)
            # result of flipping a coin 10 times, tested 1000 times.

            A real world example. A company drills 9 wild-cat oil exploration  wells,  each  with  an  estimated
            probability of success of 0.1. All nine wells fail. What is the probability of that happening?

            Let's do 20,000 trials of the model, and count the number that generate zero positive results.

            >>> sum(np.random.binomial(9, 0.1, 20000) == 0)/20000.
            # answer = 0.38885, or 38%.

       XRStools.xrs_calctools.boxParser(filename)
              parseXYZfile Reads an xyz-style file.

       XRStools.xrs_calctools.broaden_diagram(e, s, params=[1.0, 1.0, 537.5, 540.0], npoints=1000)
              function [e2,s2] = broaden_diagram2(e,s,params,npoints)

              %    BROADEN_DIAGRAM2      Broaden    a    StoBe    line    diagram    %    %     [ENE2,SQW2]    =
              BROADEN_DIAGRAM2(ENE,SQW,PARAMS,NPOINTS) % %   gives the  broadened  spectrum  SQW2(ENE2)  of  the
              line-spectrum  %    SWQ(ENE). Each line is substituted with a Gaussian peak, %   the FWHM of which
              is determined by PARAMS. ENE2 is a linear %    scale  of  length  NPOINTS  (default  1000).   %  %
              PARAMS  =  [f_min f_max emin max] % %     For ENE <= e_min, FWHM = f_min.  %     For ENE >= e_max,
              FWHM = f_min.  %     FWHM increases linearly from  [f_min  f_max]  between  [e_min  e_max].   %  %
              T Pylkkanen @ 2008-04-18 [17:37]

       XRStools.xrs_calctools.broaden_linear(spec, params=[0.8, 8, 537.5, 550], npoints=1000)
              broadens  a  spectrum with a Gaussian of width params[0] below params[2] and width params[1] above
              params[3], width increases linear in between.  returns two-column numpy array  of  length  npoints
              with energy and the broadened spectrum

       XRStools.xrs_calctools.calculateCOMlist(atomList)
              calculateCOMlist Calculates center of mass for a list of atoms.

       XRStools.xrs_calctools.calculateRIJhist(atoms, boxLength, DELR=0.01, MAXBIN=1000)

       XRStools.xrs_calctools.calculateRIJhist2_arb(atoms1, atoms2, lattice, lattice_inv, DELR=0.01,
       MAXBIN=1000)

       XRStools.xrs_calctools.calculateRIJhist_arb(atoms1, atoms2, lattice, lattice_inv, DELR=0.01, MAXBIN=1000)

       XRStools.xrs_calctools.changeOHBondLength(h2oMol, fraction, boxLength=None, oName='O', hName='H')

       XRStools.xrs_calctools.chisquare(df, size=None)
              Draw samples from a chi-square distribution.

              When  df  independent  random variables, each with standard normal distributions (mean 0, variance
              1), are  squared  and  summed,  the  resulting  distribution  is  chi-square  (see  Notes).   This
              distribution is often used in hypothesis testing.

              NOTE:
                 New  code  should  use the chisquare method of a default_rng() instance instead; please see the
                 random-quick-start.

              df     float or array_like of floats Number of degrees of freedom, must be > 0.

              size   int or tuple of ints, optional Output shape.  If the given shape is, e.g., (m, n, k),  then
                     m  *  n * k samples are drawn.  If size is None (default), a single value is returned if df
                     is a scalar.  Otherwise, np.array(df).size samples are drawn.

              out    ndarray or scalar Drawn samples from the parameterized chi-square distribution.

              ValueError
                     When df <= 0 or when an inappropriate size (e.g. size=-1) is given.

              Generator.chisquare: which should be used for new code.

              The variable obtained by summing the squares of  df  independent,  standard  normally  distributed
              random variables:

                                              Q = \sum_{i=0}^{\mathtt{df}} X^2_i

              is chi-square distributed, denoted

                                                       Q \sim \chi^2_k.

              The probability density function of the chi-squared distribution is

                                            p(x) = \frac{(1/2)^{k/2}}{\Gamma(k/2)}
              x^{k/2 - 1} e^{-x/2},

              where \Gamma is the gamma function,

                                      \Gamma(x) = \int_0^{-\infty} t^{x - 1} e^{-t} dt.

       [1]  NIST                      "Engineering                      Statistics                     Handbook"
            https://www.itl.nist.gov/div898/handbook/eda/section3/eda3666.htm

            >>> np.random.chisquare(2,4)
            array([ 1.89920014,  9.00867716,  3.13710533,  5.62318272]) # random

       XRStools.xrs_calctools.choice(a, size=None, replace=True, p=None)
              Generates a random sample from a given 1-D array

              New in version 1.7.0.

              NOTE:
                 New code should use the choice method of a  default_rng()  instance  instead;  please  see  the
                 random-quick-start.

              a      1-D array-like or int If an ndarray, a random sample is generated from its elements.  If an
                     int, the random sample is generated as if it were np.arange(a)

              size   int  or tuple of ints, optional Output shape.  If the given shape is, e.g., (m, n, k), then
                     m * n * k samples are drawn.  Default is None, in which case a single value is returned.

              replace
                     boolean, optional Whether the sample is with  or  without  replacement.  Default  is  True,
                     meaning that a value of a can be selected multiple times.

              p      1-D  array-like, optional The probabilities associated with each entry in a.  If not given,
                     the sample assumes a uniform distribution over all entries in a.

              samples
                     single item or ndarray The generated random samples

              ValueError
                     If a is an int and less than zero, if a or p are not 1-dimensional, if a is  an  array-like
                     of  size 0, if p is not a vector of probabilities, if a and p have different lengths, or if
                     replace=False and the sample size is greater than the population size

              randint, shuffle, permutation Generator.choice: which should be used in new code

              Setting user-specified probabilities through p uses a more general but less efficient sampler than
              the default. The general sampler produces a different sample than the optimized  sampler  even  if
              each element of p is 1 / len(a).

              Sampling  random  rows  from  a 2-D array is not possible with this function, but is possible with
              Generator.choice through its axis keyword.

              Generate a uniform random sample from np.arange(5) of size 3:

              >>> np.random.choice(5, 3)
              array([0, 3, 4]) # random
              >>> #This is equivalent to np.random.randint(0,5,3)

              Generate a non-uniform random sample from np.arange(5) of size 3:

              >>> np.random.choice(5, 3, p=[0.1, 0, 0.3, 0.6, 0])
              array([3, 3, 0]) # random

              Generate a uniform random sample from np.arange(5) of size 3 without replacement:

              >>> np.random.choice(5, 3, replace=False)
              array([3,1,0]) # random
              >>> #This is equivalent to np.random.permutation(np.arange(5))[:3]

              Generate a non-uniform random sample from np.arange(5) of size 3 without replacement:

              >>> np.random.choice(5, 3, replace=False, p=[0.1, 0, 0.3, 0.6, 0])
              array([2, 3, 0]) # random

              Any of the above can be repeated with an  arbitrary  array-like  instead  of  just  integers.  For
              instance:

              >>> aa_milne_arr = ['pooh', 'rabbit', 'piglet', 'Christopher']
              >>> np.random.choice(aa_milne_arr, 5, p=[0.5, 0.1, 0.1, 0.3])
              array(['pooh', 'pooh', 'pooh', 'Christopher', 'piglet'], # random
                    dtype='<U11')

       XRStools.xrs_calctools.convg(x, y, fwhm)
              Convolution with Gaussian

       XRStools.xrs_calctools.countHbonds(mol1, mol2, Roocut=3.6, Rohcut=2.4, Aoooh=30.0)

       XRStools.xrs_calctools.countHbonds_orig(mol1, mol2, Roocut=3.6, Rohcut=2.4, Aoooh=30.0)

       XRStools.xrs_calctools.countHbonds_pbc(mol1, mol2, boxLength, Roocut=3.6, Rohcut=2.4, Aoooh=30.0)

       XRStools.xrs_calctools.count_HBonds_pbc_arb(mol1, mol2, lattice, lattice_inv, Roocut=3.6, Rohcut=2.4,
       Aoooh=30.0)

       XRStools.xrs_calctools.count_OO_neighbors(list_of_o_atoms, Roocut, boxLength=None)

       XRStools.xrs_calctools.count_OO_neighbors_pbc(list_of_o_atoms, Roocut, boxLength, numbershells=1)

       XRStools.xrs_calctools.cut_spec(spec, emin=None, emax=None)
              deletes lines of matrix with first column smaller than emin and larger than emax

       XRStools.xrs_calctools.dirichlet(alpha, size=None)
              Draw samples from the Dirichlet distribution.

              Draw  size  samples  of  dimension k from a Dirichlet distribution. A Dirichlet-distributed random
              variable can be seen as a multivariate  generalization  of  a  Beta  distribution.  The  Dirichlet
              distribution is a conjugate prior of a multinomial distribution in Bayesian inference.

              NOTE:
                 New  code  should  use the dirichlet method of a default_rng() instance instead; please see the
                 random-quick-start.

              alpha  sequence of floats, length k Parameter of the distribution (length k for sample  of  length
                     k).

              size   int or tuple of ints, optional Output shape.  If the given shape is, e.g., (m, n), then m *
                     n * k samples are drawn.  Default is None, in which case a vector of length k is returned.

              samples
                     ndarray, The drawn samples, of shape (size, k).

              ValueError
                     If any value in alpha is less than or equal to zero

              Generator.dirichlet: which should be used for new code.

              The  Dirichlet  distribution is a distribution over vectors x that fulfil the conditions x_i>0 and
              \sum_{i=1}^k x_i = 1.

              The probability density function p of a Dirichlet-distributed random vector X is proportional to

                                       p(x) \propto \prod_{i=1}^{k}{x^{\alpha_i-1}_i},

              where \alpha is a vector containing the positive concentration parameters.

              The method uses the following property for computation:  let  Y  be  a  random  vector  which  has
              components  that  follow  a standard gamma distribution, then X = \frac{1}{\sum_{i=1}^k{Y_i}} Y is
              Dirichlet-distributed

       [1]  David   McKay,   "Information   Theory,   Inference   and   Learning   Algorithms,"   chapter    23,
            http://www.inference.org.uk/mackay/itila/

       [2]  Wikipedia, "Dirichlet distribution", https://en.wikipedia.org/wiki/Dirichlet_distribution

            Taking  an  example  cited  in Wikipedia, this distribution can be used if one wanted to cut strings
            (each of initial length 1.0) into K pieces with different lengths, where each piece had, on average,
            a designated average length, but allowing some variation in the relative sizes of the pieces.

            >>> s = np.random.dirichlet((10, 5, 3), 20).transpose()

            >>> import matplotlib.pyplot as plt
            >>> plt.barh(range(20), s[0])
            >>> plt.barh(range(20), s[1], left=s[0], color='g')
            >>> plt.barh(range(20), s[2], left=s[0]+s[1], color='r')
            >>> plt.title("Lengths of Strings")

       class XRStools.xrs_calctools.erkale(prefix, postfix, fromnumber, tonumber, step, stepformat=2)
              Bases: object

              class to analyze ERKALE XRS results.

              broaden_lin(params=[0.8, 8, 537.5, 550], npoints=1000)

              cut_broadspecs(emin=None, emax=None)

              cut_rawspecs(emin=None, emax=None)

              norm_area(emin=None, emax=None)

              norm_max()

              plot_spec()

              sum_specs()

       XRStools.xrs_calctools.exponential(scale=1.0, size=None)
              Draw samples from an exponential distribution.

              Its probability density function is

                               f(x; \frac{1}{\beta}) = \frac{1}{\beta} \exp(-\frac{x}{\beta}),

              for x > 0 and 0 elsewhere. \beta is the  scale  parameter,  which  is  the  inverse  of  the  rate
              parameter  \lambda  = 1/\beta.  The rate parameter is an alternative, widely used parameterization
              of the exponential distribution
              [3]_
              .

              The exponential distribution is a continuous analogue of the geometric distribution.  It describes
              many common situations, such as the size of raindrops measured over many rainstorms
              [1]_
              , or the time between page requests to Wikipedia
              [2]_
              .

              NOTE:
                 New code should use the exponential method of a default_rng() instance instead; please see  the
                 random-quick-start.

              scale  float or array_like of floats The scale parameter, \beta = 1/\lambda. Must be non-negative.

              size   int  or tuple of ints, optional Output shape.  If the given shape is, e.g., (m, n, k), then
                     m * n * k samples are drawn.  If size is None (default), a  single  value  is  returned  if
                     scale is a scalar.  Otherwise, np.array(scale).size samples are drawn.

              out    ndarray or scalar Drawn samples from the parameterized exponential distribution.

              Generator.exponential: which should be used for new code.

       [1]  Peyton  Z.  Peebles Jr., "Probability, Random Variables and Random Signal Principles", 4th ed, 2001,
            p. 57.

       [2]  Wikipedia, "Poisson process", https://en.wikipedia.org/wiki/Poisson_process

       [3]  Wikipedia, "Exponential distribution", https://en.wikipedia.org/wiki/Exponential_distribution

       XRStools.xrs_calctools.f(dfnum, dfden, size=None)
              Draw samples from an F distribution.

              Samples are drawn from an F distribution with specified parameters, dfnum (degrees of  freedom  in
              numerator)  and  dfden  (degrees of freedom in denominator), where both parameters must be greater
              than zero.

              The random variate of the F distribution (also known as the Fisher distribution) is  a  continuous
              probability distribution that arises in ANOVA tests, and is the ratio of two chi-square variates.

              NOTE:
                 New  code  should  use  the  f  method  of  a  default_rng()  instance  instead; please see the
                 random-quick-start.

              dfnum  float or array_like of floats Degrees of freedom in numerator, must be > 0.

              dfden  float or array_like of float Degrees of freedom in denominator, must be > 0.

              size   int or tuple of ints, optional Output shape.  If the given shape is, e.g., (m, n, k),  then
                     m  *  n  *  k  samples are drawn.  If size is None (default), a single value is returned if
                     dfnum and dfden are both scalars.  Otherwise, np.broadcast(dfnum, dfden).size  samples  are
                     drawn.

              out    ndarray or scalar Drawn samples from the parameterized Fisher distribution.

              scipy.stats.f
                     probability density function, distribution or cumulative density function, etc.

              Generator.f: which should be used for new code.

              The  F statistic is used to compare in-group variances to between-group variances. Calculating the
              distribution depends on the sampling, and so it is a function of the respective degrees of freedom
              in the problem.  The variable dfnum is the number of samples minus one, the between-groups degrees
              of freedom, while dfden is the within-groups degrees of freedom, the sum of the number of  samples
              in each group minus the number of groups.

       [1]  Glantz, Stanton A. "Primer of Biostatistics.", McGraw-Hill, Fifth Edition, 2002.

       [2]  Wikipedia, "F-distribution", https://en.wikipedia.org/wiki/F-distribution

            An example from Glantz[1], pp 47-40:

            Two  groups,  children  of  diabetics  (25  people)  and  children  from people without diabetes (25
            controls). Fasting blood glucose was measured, case group had a mean value of 86.1, controls  had  a
            mean  value  of 82.2. Standard deviations were 2.09 and 2.49 respectively. Are these data consistent
            with the null hypothesis that the parents diabetic status does not  affect  their  children's  blood
            glucose levels?  Calculating the F statistic from the data gives a value of 36.01.

            Draw samples from the distribution:

            >>> dfnum = 1. # between group degrees of freedom
            >>> dfden = 48. # within groups degrees of freedom
            >>> s = np.random.f(dfnum, dfden, 1000)

            The lower bound for the top 1% of the samples is :

            >>> np.sort(s)[-10]
            7.61988120985 # random

            So  there  is  about a 1% chance that the F statistic will exceed 7.62, the measured value is 36, so
            the null hypothesis is rejected at the 1% level.

       XRStools.xrs_calctools.findAllWaters(point, waterMols, o_name, cutoff)

       XRStools.xrs_calctools.findHexaneMolecules(box, c_atoms, CC_cut=1.7, CH_cut=1.2)

       XRStools.xrs_calctools.findMethanolMolecules(box, CO_cut=1.6, CH_cut=1.2, OH_cut=1.2)

       XRStools.xrs_calctools.findMolecule(xyzAtoms, molAtomList)

       XRStools.xrs_calctools.find_H2O_molecules(o_atoms, h_atoms, boxLength=None)

       XRStools.xrs_calctools.find_H2O_molecules_PBC_arb(o_atoms, h_atoms, lattice, lattice_inv, OH_cutoff=1.5)

       XRStools.xrs_calctools.gamma(shape, scale=1.0, size=None)
              Draw samples from a Gamma distribution.

              Samples are drawn from a Gamma distribution with specified parameters, shape (sometimes designated
              "k") and scale (sometimes designated "theta"), where both parameters are > 0.

              NOTE:
                 New code should use the gamma method of  a  default_rng()  instance  instead;  please  see  the
                 random-quick-start.

              shape  float or array_like of floats The shape of the gamma distribution. Must be non-negative.

              scale  float  or  array_like  of  floats,  optional  The  scale of the gamma distribution. Must be
                     non-negative.  Default is equal to 1.

              size   int or tuple of ints, optional Output shape.  If the given shape is, e.g., (m, n, k),  then
                     m  *  n  *  k  samples are drawn.  If size is None (default), a single value is returned if
                     shape and scale are both scalars.  Otherwise, np.broadcast(shape, scale).size  samples  are
                     drawn.

              out    ndarray or scalar Drawn samples from the parameterized gamma distribution.

              scipy.stats.gamma
                     probability density function, distribution or cumulative density function, etc.

              Generator.gamma: which should be used for new code.

              The probability density for the Gamma distribution is

                                    p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)},

              where k is the shape and \theta the scale, and \Gamma is the Gamma function.

              The  Gamma  distribution is often used to model the times to failure of electronic components, and
              arises naturally in processes for which the waiting times between Poisson distributed  events  are
              relevant.

       [1]  Weisstein,    Eric    W.   "Gamma   Distribution."   From   MathWorld--A   Wolfram   Web   Resource.
            http://mathworld.wolfram.com/GammaDistribution.html

       [2]  Wikipedia, "Gamma distribution", https://en.wikipedia.org/wiki/Gamma_distribution

            Draw samples from the distribution:

            >>> shape, scale = 2., 2.  # mean=4, std=2*sqrt(2)
            >>> s = np.random.gamma(shape, scale, 1000)

            Display the histogram of the samples, along with the probability density function:

            >>> import matplotlib.pyplot as plt
            >>> import scipy.special as sps
            >>> count, bins, ignored = plt.hist(s, 50, density=True)
            >>> y = bins**(shape-1)*(np.exp(-bins/scale) /
            ...                      (sps.gamma(shape)*scale**shape))
            >>> plt.plot(bins, y, linewidth=2, color='r')
            >>> plt.show()

       XRStools.xrs_calctools.gauss(x, x0, fwhm)

       XRStools.xrs_calctools.gauss1(x, x0, fwhm)
              returns a gaussian with peak value normalized to unity a[0] = peak position a[1] = Full  Width  at
              Half Maximum

       XRStools.xrs_calctools.gauss_areanorm(x, x0, fwhm)
              area-normalized gaussian

       XRStools.xrs_calctools.geometric(p, size=None)
              Draw samples from the geometric distribution.

              Bernoulli  trials are experiments with one of two outcomes: success or failure (an example of such
              an experiment is flipping a coin).  The geometric distribution models the number  of  trials  that
              must  be run in order to achieve success.  It is therefore supported on the positive integers, k =
              1, 2, ....

              The probability mass function of the geometric distribution is

                                                   f(k) = (1 - p)^{k - 1} p

              where p is the probability of success of an individual trial.

              NOTE:
                 New code should use the geometric method of a default_rng() instance instead;  please  see  the
                 random-quick-start.

              p      float or array_like of floats The probability of success of an individual trial.

              size   int  or tuple of ints, optional Output shape.  If the given shape is, e.g., (m, n, k), then
                     m * n * k samples are drawn.  If size is None (default), a single value is returned if p is
                     a scalar.  Otherwise, np.array(p).size samples are drawn.

              out    ndarray or scalar Drawn samples from the parameterized geometric distribution.

              Generator.geometric: which should be used for new code.

              Draw ten thousand values from the geometric distribution, with the probability  of  an  individual
              success equal to 0.35:

              >>> z = np.random.geometric(p=0.35, size=10000)

              How many trials succeeded after a single run?

              >>> (z == 1).sum() / 10000.
              0.34889999999999999 #random

       XRStools.xrs_calctools.getDistVector(atom1, atom2)

       XRStools.xrs_calctools.getDistVectorPBC_arb(atom1, atom2, lattice, lattice_inv)
              getDistVectorPBC_arb

              Calculates  the  distance  vector  between  two  atoms  from an arbitrary simulation box using the
              minimum image convention.

              Args:  atom1 (obj): Instance of the xzyAtom class.  atom2 (obj): Instance of  the  xzyAtom  class.
                     lattice (np.array): Array with lattice vectors as columns.  lattice_inv (np.array): Inverse
                     of lattice.

              Returns:
                     The distance vector between the two atoms (np.array).

       XRStools.xrs_calctools.getDistVectorPbc(atom1, atom2, boxLength)

       XRStools.xrs_calctools.getDistance(atom1, atom2)

       XRStools.xrs_calctools.getDistancePBC_arb(atom1, atom2, lattice, lattice_inv)
              getDistancePBC_arb

              Calculates  the  distance  of  two  atoms from an arbitrary simulation box using the minimum image
              convention.

              Args:  atom1 (obj): Instance of the xzyAtom class.  atom2 (obj): Instance of  the  xzyAtom  class.
                     lattice (np.array): Array with lattice vectors as columns.  lattice_inv (np.array): Inverse
                     of lattice.

              Returns:
                     The distance between the two atoms.

       XRStools.xrs_calctools.getDistancePbc(atom1, atom2, boxLength)

       XRStools.xrs_calctools.getDistsFromMolecule(point, listOfMolecules, o_name=None)

       XRStools.xrs_calctools.getPeriodicTestBox(xyzAtoms, boxLength, numbershells=1)

       XRStools.xrs_calctools.getPeriodicTestBox_arb(xyzAtoms, lattice, lattice_inv, lx=[- 1, 1], ly=[- 1, 1],
       lz=[- 1, 1])

       XRStools.xrs_calctools.getPeriodicTestBox_molecules(Molecules, boxLength, numbershells=1)

       XRStools.xrs_calctools.getTetraParameter(o_atoms, boxLength=None)
              according to NATURE, VOL 409, 18 JANUARY 2001

       XRStools.xrs_calctools.getTranslVec(atom1, atom2, boxLength)
              getTranslVec  Returns  the  translation  vector that brings atom2 closer to atom1 in case atom2 is
              further than boxLength away.

       XRStools.xrs_calctools.getTranslVec_geocen(mol1COM, mol2COM, boxLength)
              getTranslVec_geocen

       XRStools.xrs_calctools.get_state()
              Return a tuple representing the internal state of the generator.

              For more details, see set_state.

              legacy bool, optional Flag indicating to return a legacy tuple  state  when  the  BitGenerator  is
                     MT19937, instead of a dict.

              out    {tuple(str,  ndarray  of  624  uints,  int,  int,  float), dict} The returned tuple has the
                     following items:

                     1. the string 'MT19937'.

                     2. a 1-D array of 624 unsigned integer keys.

                     3. an integer pos.

                     4. an integer has_gauss.

                     5. a float cached_gaussian.

                     If legacy is False, or the BitGenerator is  not  MT19937,  then  state  is  returned  as  a
                     dictionary.

              set_state

              set_state  and  get_state are not needed to work with any of the random distributions in NumPy. If
              the internal state is manually altered, the user should know exactly what he/she is doing.

       XRStools.xrs_calctools.groBoxParser(filename, nanoMeter=True)
              groBoxParser Parses an gromacs GRO-style file for the xyzBox class.

       XRStools.xrs_calctools.groTrajecParser(filename, nanoMeter=True)
              groTrajecParser Parses an gromacs GRO-style file for the xyzBox class.

       XRStools.xrs_calctools.gumbel(loc=0.0, scale=1.0, size=None)
              Draw samples from a Gumbel distribution.

              Draw samples from a Gumbel distribution with specified location and scale.  For  more  information
              on the Gumbel distribution, see Notes and References below.

              NOTE:
                 New  code  should  use  the  gumbel  method of a default_rng() instance instead; please see the
                 random-quick-start.

              loc    float or array_like of floats, optional The location  of  the  mode  of  the  distribution.
                     Default is 0.

              scale  float or array_like of floats, optional The scale parameter of the distribution. Default is
                     1. Must be non- negative.

              size   int  or tuple of ints, optional Output shape.  If the given shape is, e.g., (m, n, k), then
                     m * n * k samples are drawn.  If size is None (default), a single value is returned if  loc
                     and scale are both scalars.  Otherwise, np.broadcast(loc, scale).size samples are drawn.

              out    ndarray or scalar Drawn samples from the parameterized Gumbel distribution.

              scipy.stats.gumbel_l  scipy.stats.gumbel_r  scipy.stats.genextreme weibull Generator.gumbel: which
              should be used for new code.

              The Gumbel (or Smallest Extreme Value (SEV) or the Smallest Extreme Value Type I) distribution  is
              one  of  a  class  of Generalized Extreme Value (GEV) distributions used in modeling extreme value
              problems.  The Gumbel is a special case of the Extreme Value Type I distribution for maximums from
              distributions with "exponential-like" tails.

              The probability density for the Gumbel distribution is

                                p(x) = \frac{e^{-(x - \mu)/ \beta}}{\beta} e^{ -e^{-(x - \mu)/
              \beta}},

              where \mu is the mode, a location parameter, and \beta is the scale parameter.

              The Gumbel (named for German mathematician  Emil  Julius  Gumbel)  was  used  very  early  in  the
              hydrology  literature,  for  modeling the occurrence of flood events. It is also used for modeling
              maximum wind speed and rainfall rates.  It is a "fat-tailed" distribution - the probability of  an
              event  in  the  tail  of  the  distribution  is  larger  than  if  one  used a Gaussian, hence the
              surprisingly frequent occurrence of 100-year floods. Floods were initially modeled as  a  Gaussian
              process, which underestimated the frequency of extreme events.

              It  is  one  of  a  class  of  extreme  value  distributions,  the Generalized Extreme Value (GEV)
              distributions, which also includes the Weibull and Frechet.

              The function has a mean of \mu + 0.57721\beta and a variance of \frac{\pi^2}{6}\beta^2.

       [1]  Gumbel, E. J., "Statistics of Extremes," New York: Columbia University Press, 1958.

       [2]  Reiss, R.-D. and Thomas, M., "Statistical  Analysis  of  Extreme  Values  from  Insurance,  Finance,
            Hydrology and Other Fields," Basel: Birkhauser Verlag, 2001.

            Draw samples from the distribution:

            >>> mu, beta = 0, 0.1 # location and scale
            >>> s = np.random.gumbel(mu, beta, 1000)

            Display the histogram of the samples, along with the probability density function:

            >>> import matplotlib.pyplot as plt
            >>> count, bins, ignored = plt.hist(s, 30, density=True)
            >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta)
            ...          * np.exp( -np.exp( -(bins - mu) /beta) ),
            ...          linewidth=2, color='r')
            >>> plt.show()

            Show how an extreme value distribution can arise from a Gaussian process and compare to a Gaussian:

            >>> means = []
            >>> maxima = []
            >>> for i in range(0,1000) :
            ...    a = np.random.normal(mu, beta, 1000)
            ...    means.append(a.mean())
            ...    maxima.append(a.max())
            >>> count, bins, ignored = plt.hist(maxima, 30, density=True)
            >>> beta = np.std(maxima) * np.sqrt(6) / np.pi
            >>> mu = np.mean(maxima) - 0.57721*beta
            >>> plt.plot(bins, (1/beta)*np.exp(-(bins - mu)/beta)
            ...          * np.exp(-np.exp(-(bins - mu)/beta)),
            ...          linewidth=2, color='r')
            >>> plt.plot(bins, 1/(beta * np.sqrt(2 * np.pi))
            ...          * np.exp(-(bins - mu)**2 / (2 * beta**2)),
            ...          linewidth=2, color='g')
            >>> plt.show()

       XRStools.xrs_calctools.hypergeometric(ngood, nbad, nsample, size=None)
              Draw samples from a Hypergeometric distribution.

              Samples  are  drawn  from  a hypergeometric distribution with specified parameters, ngood (ways to
              make a good selection), nbad (ways to make a bad selection), and nsample (number of items sampled,
              which is less than or equal to the sum ngood + nbad).

              NOTE:
                 New code should use the hypergeometric method of a default_rng() instance instead;  please  see
                 the random-quick-start.

              ngood  int or array_like of ints Number of ways to make a good selection.  Must be nonnegative.

              nbad   int or array_like of ints Number of ways to make a bad selection.  Must be nonnegative.

              nsample
                     int  or array_like of ints Number of items sampled.  Must be at least 1 and at most ngood +
                     nbad.

              size   int or tuple of ints, optional Output shape.  If the given shape is, e.g., (m, n, k),  then
                     m  *  n  *  k  samples are drawn.  If size is None (default), a single value is returned if
                     ngood,  nbad,  and  nsample  are  all  scalars.    Otherwise,   np.broadcast(ngood,   nbad,
                     nsample).size samples are drawn.

              out    ndarray  or  scalar  Drawn samples from the parameterized hypergeometric distribution. Each
                     sample is the number of good items within a randomly selected subset of size nsample  taken
                     from a set of ngood good items and nbad bad items.

              scipy.stats.hypergeom
                     probability density function, distribution or cumulative density function, etc.

              Generator.hypergeometric: which should be used for new code.

              The probability density for the Hypergeometric distribution is

                                  P(x) = \frac{\binom{g}{x}\binom{b}{n-x}}{\binom{g+b}{n}},

              where 0 \le x \le n and n-b \le x \le g

              for  P(x)  the  probability  of  x  good results in the drawn sample, g = ngood, b = nbad, and n =
              nsample.

              Consider an urn with black and white marbles in it, ngood of them are black and nbad are white. If
              you draw nsample balls without replacement, then the  hypergeometric  distribution  describes  the
              distribution of black balls in the drawn sample.

              Note  that  this  distribution  is  very similar to the binomial distribution, except that in this
              case, samples are drawn without replacement, whereas in the Binomial case samples are  drawn  with
              replacement  (or  the  sample  space  is  infinite).  As  the  sample  space  becomes  large, this
              distribution approaches the binomial.

       [1]  Lentner, Marvin, "Elementary Applied Statistics", Bogden and Quigley, 1972.

       [2]  Weisstein,  Eric  W.  "Hypergeometric  Distribution."  From  MathWorld--A  Wolfram   Web   Resource.
            http://mathworld.wolfram.com/HypergeometricDistribution.html

       [3]  Wikipedia, "Hypergeometric distribution", https://en.wikipedia.org/wiki/Hypergeometric_distribution

            Draw samples from the distribution:

            >>> ngood, nbad, nsamp = 100, 2, 10
            # number of good, number of bad, and number of samples
            >>> s = np.random.hypergeometric(ngood, nbad, nsamp, 1000)
            >>> from matplotlib.pyplot import hist
            >>> hist(s)
            #   note that it is very unlikely to grab both bad items

            Suppose  you  have an urn with 15 white and 15 black marbles.  If you pull 15 marbles at random, how
            likely is it that 12 or more of them are one color?

            >>> s = np.random.hypergeometric(15, 15, 15, 100000)
            >>> sum(s>=12)/100000. + sum(s<=3)/100000.
            #   answer = 0.003 ... pretty unlikely!

       XRStools.xrs_calctools.keithBoxParser(cell_fname, coord_fname)
              keithBoxParser

              Reads structure files from Keith's SiO2 simulations.

       XRStools.xrs_calctools.laplace(loc=0.0, scale=1.0, size=None)
              Draw samples from the Laplace or double exponential distribution with specified location (or mean)
              and scale (decay).

              The Laplace distribution is similar to the Gaussian/normal distribution, but  is  sharper  at  the
              peak  and  has  fatter  tails.  It  represents the difference between two independent, identically
              distributed exponential random variables.

              NOTE:
                 New code should use the laplace method of a default_rng()  instance  instead;  please  see  the
                 random-quick-start.

              loc    float  or  array_like  of  floats,  optional  The  position, \mu, of the distribution peak.
                     Default is 0.

              scale  float or array_like of floats, optional \lambda, the exponential decay. Default is 1.  Must
                     be non- negative.

              size   int  or tuple of ints, optional Output shape.  If the given shape is, e.g., (m, n, k), then
                     m * n * k samples are drawn.  If size is None (default), a single value is returned if  loc
                     and scale are both scalars.  Otherwise, np.broadcast(loc, scale).size samples are drawn.

              out    ndarray or scalar Drawn samples from the parameterized Laplace distribution.

              Generator.laplace: which should be used for new code.

              It has the probability density function

                                           f(x; \mu, \lambda) = \frac{1}{2\lambda}
              \exp\left(-\frac{|x - \mu|}{\lambda}\right).

              The  first law of Laplace, from 1774, states that the frequency of an error can be expressed as an
              exponential function of  the  absolute  magnitude  of  the  error,  which  leads  to  the  Laplace
              distribution. For many problems in economics and health sciences, this distribution seems to model
              the data better than the standard Gaussian distribution.

       [1]  Abramowitz,  M. and Stegun, I. A. (Eds.). "Handbook of Mathematical Functions with Formulas, Graphs,
            and Mathematical Tables, 9th printing," New York: Dover, 1972.

       [2]  Kotz, Samuel, et. al. "The Laplace Distribution and Generalizations, " Birkhauser, 2001.

       [3]  Weisstein,  Eric   W.   "Laplace   Distribution."    From   MathWorld--A   Wolfram   Web   Resource.
            http://mathworld.wolfram.com/LaplaceDistribution.html

       [4]  Wikipedia, "Laplace distribution", https://en.wikipedia.org/wiki/Laplace_distribution

            Draw samples from the distribution

            >>> loc, scale = 0., 1.
            >>> s = np.random.laplace(loc, scale, 1000)

            Display the histogram of the samples, along with the probability density function:

            >>> import matplotlib.pyplot as plt
            >>> count, bins, ignored = plt.hist(s, 30, density=True)
            >>> x = np.arange(-8., 8., .01)
            >>> pdf = np.exp(-abs(x-loc)/scale)/(2.*scale)
            >>> plt.plot(x, pdf)

            Plot Gaussian for comparison:

            >>> g = (1/(scale * np.sqrt(2 * np.pi)) *
            ...      np.exp(-(x - loc)**2 / (2 * scale**2)))
            >>> plt.plot(x,g)

       XRStools.xrs_calctools.load_erkale_spec(filename)
              returns an erkale spectrum

       XRStools.xrs_calctools.load_erkale_specs(prefix, postfix, fromnumber, tonumber, step, stepformat=2)
              returns a list of erkale spectra

       XRStools.xrs_calctools.load_stobe_specs(prefix, postfix, fromnumber, tonumber, step, stepformat=2)
              load  a  bunch  of StoBe calculations, which filenames are made up of the prefix, postfix, and the
              counter in the between the prefix and postfix runs from 'fromnumber' to  'tonumber'  in  steps  of
              'step' (number of digits is 'stepformat')

       XRStools.xrs_calctools.logistic(loc=0.0, scale=1.0, size=None)
              Draw samples from a logistic distribution.

              Samples  are  drawn from a logistic distribution with specified parameters, loc (location or mean,
              also median), and scale (>0).

              NOTE:
                 New code should use the logistic method of a default_rng() instance  instead;  please  see  the
                 random-quick-start.

              loc    float or array_like of floats, optional Parameter of the distribution. Default is 0.

              scale  float   or   array_like  of  floats,  optional  Parameter  of  the  distribution.  Must  be
                     non-negative.  Default is 1.

              size   int or tuple of ints, optional Output shape.  If the given shape is, e.g., (m, n, k),  then
                     m  * n * k samples are drawn.  If size is None (default), a single value is returned if loc
                     and scale are both scalars.  Otherwise, np.broadcast(loc, scale).size samples are drawn.

              out    ndarray or scalar Drawn samples from the parameterized logistic distribution.

              scipy.stats.logistic
                     probability density function, distribution or cumulative density function, etc.

              Generator.logistic: which should be used for new code.

              The probability density for the Logistic distribution is

                                 P(x) = P(x) = \frac{e^{-(x-\mu)/s}}{s(1+e^{-(x-\mu)/s})^2},

              where \mu = location and s = scale.

              The Logistic distribution is used in Extreme Value problems where it  can  act  as  a  mixture  of
              Gumbel  distributions,  in Epidemiology, and by the World Chess Federation (FIDE) where it is used
              in the Elo ranking system, assuming the performance of each player is a  logistically  distributed
              random variable.

       [1]  Reiss, R.-D. and Thomas M. (2001), "Statistical Analysis of Extreme Values, from Insurance, Finance,
            Hydrology and Other Fields," Birkhauser Verlag, Basel, pp 132-133.

       [2]  Weisstein,   Eric   W.   "Logistic   Distribution."   From   MathWorld--A   Wolfram   Web  Resource.
            http://mathworld.wolfram.com/LogisticDistribution.html

       [3]  Wikipedia, "Logistic-distribution", https://en.wikipedia.org/wiki/Logistic_distribution

            Draw samples from the distribution:

            >>> loc, scale = 10, 1
            >>> s = np.random.logistic(loc, scale, 10000)
            >>> import matplotlib.pyplot as plt
            >>> count, bins, ignored = plt.hist(s, bins=50)

            #   plot against distribution

            >>> def logist(x, loc, scale):
            ...     return np.exp((loc-x)/scale)/(scale*(1+np.exp((loc-x)/scale))**2)
            >>> lgst_val = logist(bins, loc, scale)
            >>> plt.plot(bins, lgst_val * count.max() / lgst_val.max())
            >>> plt.show()

       XRStools.xrs_calctools.lognormal(mean=0.0, sigma=1.0, size=None)
              Draw samples from a log-normal distribution.

              Draw samples from a log-normal distribution with specified mean,  standard  deviation,  and  array
              shape.   Note that the mean and standard deviation are not the values for the distribution itself,
              but of the underlying normal distribution it is derived from.

              NOTE:
                 New code should use the lognormal method of a default_rng() instance instead;  please  see  the
                 random-quick-start.

              mean   float  or  array_like of floats, optional Mean value of the underlying normal distribution.
                     Default is 0.

              sigma  float or array_like of  floats,  optional  Standard  deviation  of  the  underlying  normal
                     distribution. Must be non-negative. Default is 1.

              size   int  or tuple of ints, optional Output shape.  If the given shape is, e.g., (m, n, k), then
                     m * n * k samples are drawn.  If size is None (default), a single value is returned if mean
                     and sigma are both scalars.  Otherwise, np.broadcast(mean, sigma).size samples are drawn.

              out    ndarray or scalar Drawn samples from the parameterized log-normal distribution.

              scipy.stats.lognorm
                     probability density function, distribution, cumulative density function, etc.

              Generator.lognormal: which should be used for new code.

              A variable x has a log-normal distribution if log(x) is  normally  distributed.   The  probability
              density function for the log-normal distribution is:

                                            p(x) = \frac{1}{\sigma x \sqrt{2\pi}}
              e^{(-\frac{(ln(x)-\mu)^2}{2\sigma^2})}

              where  \mu  is the mean and \sigma is the standard deviation of the normally distributed logarithm
              of the variable.  A log-normal distribution results if a random variable is the product of a large
              number  of  independent,  identically-distributed  variables  in  the  same  way  that  a   normal
              distribution   results   if   the   variable  is  the  sum  of  a  large  number  of  independent,
              identically-distributed variables.

       [1]  Limpert, E., Stahel, W. A., and Abbt, M., "Log-normal Distributions across the  Sciences:  Keys  and
            Clues,"         BioScience,         Vol.         51,         No.         5,        May,        2001.
            https://stat.ethz.ch/~stahel/lognormal/bioscience.pdf

       [2]  Reiss, R.D. and Thomas, M., "Statistical Analysis of  Extreme  Values,"  Basel:  Birkhauser  Verlag,
            2001, pp. 31-32.

            Draw samples from the distribution:

            >>> mu, sigma = 3., 1. # mean and standard deviation
            >>> s = np.random.lognormal(mu, sigma, 1000)

            Display the histogram of the samples, along with the probability density function:

            >>> import matplotlib.pyplot as plt
            >>> count, bins, ignored = plt.hist(s, 100, density=True, align='mid')

            >>> x = np.linspace(min(bins), max(bins), 10000)
            >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2))
            ...        / (x * sigma * np.sqrt(2 * np.pi)))

            >>> plt.plot(x, pdf, linewidth=2, color='r')
            >>> plt.axis('tight')
            >>> plt.show()

            Demonstrate  that  taking the products of random samples from a uniform distribution can be fit well
            by a log-normal probability density function.

            >>> # Generate a thousand samples: each is the product of 100 random
            >>> # values, drawn from a normal distribution.
            >>> b = []
            >>> for i in range(1000):
            ...    a = 10. + np.random.standard_normal(100)
            ...    b.append(np.product(a))

            >>> b = np.array(b) / np.min(b) # scale values to be positive
            >>> count, bins, ignored = plt.hist(b, 100, density=True, align='mid')
            >>> sigma = np.std(np.log(b))
            >>> mu = np.mean(np.log(b))

            >>> x = np.linspace(min(bins), max(bins), 10000)
            >>> pdf = (np.exp(-(np.log(x) - mu)**2 / (2 * sigma**2))
            ...        / (x * sigma * np.sqrt(2 * np.pi)))

            >>> plt.plot(x, pdf, color='r', linewidth=2)
            >>> plt.show()

       XRStools.xrs_calctools.logseries(p, size=None)
              Draw samples from a logarithmic series distribution.

              Samples are drawn from a log series distribution with specified shape parameter, 0 < p < 1.

              NOTE:
                 New code should use the logseries method of a default_rng() instance instead;  please  see  the
                 random-quick-start.

              p      float  or  array_like of floats Shape parameter for the distribution.  Must be in the range
                     (0, 1).

              size   int or tuple of ints, optional Output shape.  If the given shape is, e.g., (m, n, k),  then
                     m * n * k samples are drawn.  If size is None (default), a single value is returned if p is
                     a scalar.  Otherwise, np.array(p).size samples are drawn.

              out    ndarray or scalar Drawn samples from the parameterized logarithmic series distribution.

              scipy.stats.logser
                     probability density function, distribution or cumulative density function, etc.

              Generator.logseries: which should be used for new code.

              The probability density for the Log Series distribution is

                                               P(k) = \frac{-p^k}{k \ln(1-p)},

              where p = probability.

              The log series distribution is frequently used to represent species richness and occurrence, first
              proposed by Fisher, Corbet, and Williams in 1943 [2].  It may also be used to model the numbers of
              occupants seen in cars [3].

       [1]  Buzas,  Martin  A.;  Culver,  Stephen  J.,  Understanding regional species diversity through the log
            series distribution of occurrences: BIODIVERSITY  RESEARCH  Diversity  &  Distributions,  Volume  5,
            Number 5, September 1999 , pp. 187-195(9).

       [2]  Fisher,  R.A,,  A.S. Corbet, and C.B. Williams. 1943. The relation between the number of species and
            the number of individuals in a random sample of an animal population.  Journal  of  Animal  Ecology,
            12:42-58.

       [3]  D. J. Hand, F. Daly, D. Lunn, E. Ostrowski, A Handbook of Small Data Sets, CRC Press, 1994.

       [4]  Wikipedia, "Logarithmic distribution", https://en.wikipedia.org/wiki/Logarithmic_distribution

            Draw samples from the distribution:

            >>> a = .6
            >>> s = np.random.logseries(a, 10000)
            >>> import matplotlib.pyplot as plt
            >>> count, bins, ignored = plt.hist(s)

            #   plot against distribution

            >>> def logseries(k, p):
            ...     return -p**k/(k*np.log(1-p))
            >>> plt.plot(bins, logseries(bins, a)*count.max()/
            ...          logseries(bins, a).max(), 'r')
            >>> plt.show()

       XRStools.xrs_calctools.multinomial(n, pvals, size=None)
              Draw samples from a multinomial distribution.

              The  multinomial distribution is a multivariate generalization of the binomial distribution.  Take
              an experiment with one of p possible outcomes.  An example of such an  experiment  is  throwing  a
              dice,  where the outcome can be 1 through 6.  Each sample drawn from the distribution represents n
              such experiments.  Its values, X_i = [X_0, X_1, ..., X_p],  represent  the  number  of  times  the
              outcome was i.

              NOTE:
                 New  code should use the multinomial method of a default_rng() instance instead; please see the
                 random-quick-start.

              n      int Number of experiments.

              pvals  sequence of floats, length p Probabilities of each of the p different outcomes.  These must
                     sum to 1 (however, the last  element  is  always  assumed  to  account  for  the  remaining
                     probability, as long as sum(pvals[:-1]) <= 1).

              size   int  or tuple of ints, optional Output shape.  If the given shape is, e.g., (m, n, k), then
                     m * n * k samples are drawn.  Default is None, in which case a single value is returned.

              out    ndarray The drawn samples, of shape size, if that was provided.  If not, the shape is (N,).

                     In other words, each  entry  out[i,j,...,:]  is  an  N-dimensional  value  drawn  from  the
                     distribution.

              Generator.multinomial: which should be used for new code.

              Throw a dice 20 times:

              >>> np.random.multinomial(20, [1/6.]*6, size=1)
              array([[4, 1, 7, 5, 2, 1]]) # random

              It landed 4 times on 1, once on 2, etc.

              Now, throw the dice 20 times, and 20 times again:

              >>> np.random.multinomial(20, [1/6.]*6, size=2)
              array([[3, 4, 3, 3, 4, 3], # random
                     [2, 4, 3, 4, 0, 7]])

              For  the  first  run,  we  threw 3 times 1, 4 times 2, etc.  For the second, we threw 2 times 1, 4
              times 2, etc.

              A loaded die is more likely to land on number 6:

              >>> np.random.multinomial(100, [1/7.]*5 + [2/7.])
              array([11, 16, 14, 17, 16, 26]) # random

              The probability inputs should be normalized. As an implementation detail, the value  of  the  last
              entry  is  ignored  and  assumed  to take up any leftover probability mass, but this should not be
              relied on.  A biased coin which has twice as much weight on one side as on  the  other  should  be
              sampled like so:

              >>> np.random.multinomial(100, [1.0 / 3, 2.0 / 3])  # RIGHT
              array([38, 62]) # random

              not like:

              >>> np.random.multinomial(100, [1.0, 2.0])  # WRONG
              Traceback (most recent call last):
              ValueError: pvals < 0, pvals > 1 or pvals contains NaNs

       XRStools.xrs_calctools.multivariate_normal(mean, cov, size=None, check_valid='warn', tol=1e-8)
              Draw random samples from a multivariate normal distribution.

              The  multivariate  normal,  multinormal  or  Gaussian  distribution  is  a  generalization  of the
              one-dimensional normal distribution to higher dimensions.  Such a distribution is specified by its
              mean and covariance matrix.  These parameters are analogous to the mean (average or "center")  and
              variance (standard deviation, or "width," squared) of the one-dimensional normal distribution.

              NOTE:
                 New  code should use the multivariate_normal method of a default_rng() instance instead; please
                 see the random-quick-start.

              mean   1-D array_like, of length N Mean of the N-dimensional distribution.

              cov    2-D array_like, of shape (N, N) Covariance matrix of the distribution. It must be symmetric
                     and positive-semidefinite for proper sampling.

              size   int or tuple of ints, optional Given a shape of, for example, (m,n,k),  m*n*k  samples  are
                     generated, and packed in an m-by-n-by-k arrangement.  Because each sample is N-dimensional,
                     the  output  shape  is  (m,n,k,N).   If  no  shape  is  specified, a single (N-D) sample is
                     returned.

              check_valid
                     { 'warn', 'raise', 'ignore' }, optional Behavior when the covariance matrix is not positive
                     semidefinite.

              tol    float, optional Tolerance when checking the singular values in covariance matrix.   cov  is
                     cast to double before the check.

              out    ndarray The drawn samples, of shape size, if that was provided.  If not, the shape is (N,).

                     In  other  words,  each  entry  out[i,j,...,:]  is  an  N-dimensional  value drawn from the
                     distribution.

              Generator.multivariate_normal: which should be used for new code.

              The mean is a coordinate in N-dimensional space, which represents the location where  samples  are
              most  likely  to  be  generated.   This  is  analogous  to  the  peak  of  the  bell curve for the
              one-dimensional or univariate normal distribution.

              Covariance indicates the level to which two variables vary together.  From the multivariate normal
              distribution, we draw N-dimensional samples, X = [x_1,  x_2,  ...  x_N].   The  covariance  matrix
              element  C_{ij} is the covariance of x_i and x_j.  The element C_{ii} is the variance of x_i (i.e.
              its "spread").

              Instead of specifying the full covariance matrix, popular approximations include:

                 • Spherical covariance (cov is a multiple of the identity matrix)

                 • Diagonal covariance (cov has non-negative elements, and only on the diagonal)

              This geometrical property can be seen in two dimensions by plotting generated data-points:

              >>> mean = [0, 0]
              >>> cov = [[1, 0], [0, 100]]  # diagonal covariance

              Diagonal covariance means that points are oriented along x or y-axis:

              >>> import matplotlib.pyplot as plt
              >>> x, y = np.random.multivariate_normal(mean, cov, 5000).T
              >>> plt.plot(x, y, 'x')
              >>> plt.axis('equal')
              >>> plt.show()

              Note that the covariance matrix must  be  positive  semidefinite  (a.k.a.   nonnegative-definite).
              Otherwise, the behavior of this method is undefined and backwards compatibility is not guaranteed.

       [1]  Papoulis,  A.,  "Probability,  Random  Variables,  and  Stochastic  Processes,"  3rd  ed., New York:
            McGraw-Hill, 1991.

       [2]  Duda, R. O., Hart, P. E., and Stork, D. G., "Pattern Classification,"  2nd  ed.,  New  York:  Wiley,
            2001.

            >>> mean = (1, 2)
            >>> cov = [[1, 0], [0, 1]]
            >>> x = np.random.multivariate_normal(mean, cov, (3, 3))
            >>> x.shape
            (3, 3, 2)

            The following is probably true, given that 0.6 is roughly twice the standard deviation:

            >>> list((x[0,0,:] - mean) < 0.6)
            [True, True] # random

       XRStools.xrs_calctools.negative_binomial(n, p, size=None)
              Draw samples from a negative binomial distribution.

              Samples are drawn from a negative binomial distribution with specified parameters, n successes and
              p probability of success where n is > 0 and p is in the interval [0, 1].

              NOTE:
                 New  code  should  use the negative_binomial method of a default_rng() instance instead; please
                 see the random-quick-start.

              n      float or array_like of floats Parameter of the distribution, > 0.

              p      float or array_like of floats Parameter of the distribution, >= 0 and <=1.

              size   int or tuple of ints, optional Output shape.  If the given shape is, e.g., (m, n, k),  then
                     m  *  n  * k samples are drawn.  If size is None (default), a single value is returned if n
                     and p are both scalars.  Otherwise, np.broadcast(n, p).size samples are drawn.

              out    ndarray or scalar Drawn samples from  the  parameterized  negative  binomial  distribution,
                     where  each  sample is equal to N, the number of failures that occurred before a total of n
                     successes was reached.

              Generator.negative_binomial: which should be used for new code.

              The probability mass function of the negative binomial distribution is

                                  P(N;n,p) = \frac{\Gamma(N+n)}{N!\Gamma(n)}p^{n}(1-p)^{N},

              where n is the number of successes, p is the probability of success, N+n is the number of  trials,
              and  \Gamma  is  the  gamma  function.  When  n  is  an integer, \frac{\Gamma(N+n)}{N!\Gamma(n)} =
              \binom{N+n-1}{N}, which is the more common form of this term in the the pmf. The negative binomial
              distribution gives the probability of N failures given n successes, with a  success  on  the  last
              trial.

              If  one  throws  a  die  repeatedly  until  the  third  time  a  "1" appears, then the probability
              distribution of the number of non-"1"s that appear before the third "1"  is  a  negative  binomial
              distribution.

       [1]  Weisstein,  Eric  W.  "Negative  Binomial  Distribution."  From  MathWorld--A  Wolfram Web Resource.
            http://mathworld.wolfram.com/NegativeBinomialDistribution.html

       [2]  Wikipedia,                   "Negative                    binomial                    distribution",
            https://en.wikipedia.org/wiki/Negative_binomial_distribution

            Draw samples from the distribution:

            A  real  world  example.  A  company  drills  wild-cat oil exploration wells, each with an estimated
            probability of success of 0.1.  What is the probability of having one success  for  each  successive
            well,  that  is  what  is the probability of a single success after drilling 5 wells, after 6 wells,
            etc.?

            >>> s = np.random.negative_binomial(1, 0.1, 100000)
            >>> for i in range(1, 11):
            ...    probability = sum(s<i) / 100000.
            ...    print(i, "wells drilled, probability of one success =", probability)

       XRStools.xrs_calctools.noncentral_chisquare(df, nonc, size=None)
              Draw samples from a noncentral chi-square distribution.

              The noncentral \chi^2 distribution is a generalization of the \chi^2 distribution.

              NOTE:
                 New code should use the noncentral_chisquare method of a default_rng() instance instead; please
                 see the random-quick-start.

              df     float or array_like of floats Degrees of freedom, must be > 0.

                     Changed in version 1.10.0: Earlier NumPy versions required dfnum > 1.

              nonc   float or array_like of floats Non-centrality, must be non-negative.

              size   int or tuple of ints, optional Output shape.  If the given shape is, e.g., (m, n, k),  then
                     m  *  n * k samples are drawn.  If size is None (default), a single value is returned if df
                     and nonc are both scalars.  Otherwise, np.broadcast(df, nonc).size samples are drawn.

              out    ndarray or scalar Drawn samples from the parameterized noncentral chi-square distribution.

              Generator.noncentral_chisquare: which should be used for new code.

              The probability density function for the noncentral Chi-square distribution is

                                              P(x;df,nonc) = \sum^{\infty}_{i=0}
              \frac{e^{-nonc/2}(nonc/2)^{i}}{i!} P_{Y_{df+2i}}(x),

              where Y_{q} is the Chi-square with q degrees of freedom.

       [1]  Wikipedia,                  "Noncentral                  chi-squared                   distribution"
            https://en.wikipedia.org/wiki/Noncentral_chi-squared_distribution

            Draw values from the distribution and plot the histogram

            >>> import matplotlib.pyplot as plt
            >>> values = plt.hist(np.random.noncentral_chisquare(3, 20, 100000),
            ...                   bins=200, density=True)
            >>> plt.show()

            Draw values from a noncentral chisquare with very small noncentrality, and compare to a chisquare.

            >>> plt.figure()
            >>> values = plt.hist(np.random.noncentral_chisquare(3, .0000001, 100000),
            ...                   bins=np.arange(0., 25, .1), density=True)
            >>> values2 = plt.hist(np.random.chisquare(3, 100000),
            ...                    bins=np.arange(0., 25, .1), density=True)
            >>> plt.plot(values[1][0:-1], values[0]-values2[0], 'ob')
            >>> plt.show()

            Demonstrate how large values of non-centrality lead to a more symmetric distribution.

            >>> plt.figure()
            >>> values = plt.hist(np.random.noncentral_chisquare(3, 20, 100000),
            ...                   bins=200, density=True)
            >>> plt.show()

       XRStools.xrs_calctools.noncentral_f(dfnum, dfden, nonc, size=None)
              Draw samples from the noncentral F distribution.

              Samples  are  drawn from an F distribution with specified parameters, dfnum (degrees of freedom in
              numerator) and dfden (degrees of freedom in denominator), where both parameters > 1.  nonc is  the
              non-centrality parameter.

              NOTE:
                 New code should use the noncentral_f method of a default_rng() instance instead; please see the
                 random-quick-start.

              dfnum  float or array_like of floats Numerator degrees of freedom, must be > 0.

                     Changed in version 1.14.0: Earlier NumPy versions required dfnum > 1.

              dfden  float or array_like of floats Denominator degrees of freedom, must be > 0.

              nonc   float  or  array_like  of  floats  Non-centrality  parameter, the sum of the squares of the
                     numerator means, must be >= 0.

              size   int or tuple of ints, optional Output shape.  If the given shape is, e.g., (m, n, k),  then
                     m  *  n  *  k  samples are drawn.  If size is None (default), a single value is returned if
                     dfnum, dfden, and nonc are all scalars.  Otherwise, np.broadcast(dfnum,  dfden,  nonc).size
                     samples are drawn.

              out    ndarray or scalar Drawn samples from the parameterized noncentral Fisher distribution.

              Generator.noncentral_f: which should be used for new code.

              When  calculating the power of an experiment (power = probability of rejecting the null hypothesis
              when a specific alternative is true) the non-central F statistic becomes important.  When the null
              hypothesis is true, the F statistic follows a central F distribution. When the null hypothesis  is
              not true, then it follows a non-central F statistic.

       [1]  Weisstein,   Eric   W.   "Noncentral  F-Distribution."   From  MathWorld--A  Wolfram  Web  Resource.
            http://mathworld.wolfram.com/NoncentralF-Distribution.html

       [2]  Wikipedia, "Noncentral F-distribution", https://en.wikipedia.org/wiki/Noncentral_F-distribution

            In a study, testing for a specific alternative to the null hypothesis requires use of the Noncentral
            F distribution. We need to calculate the area in the tail of the distribution that exceeds the value
            of the F distribution for the null hypothesis.  We'll plot the  two  probability  distributions  for
            comparison.

            >>> dfnum = 3 # between group deg of freedom
            >>> dfden = 20 # within groups degrees of freedom
            >>> nonc = 3.0
            >>> nc_vals = np.random.noncentral_f(dfnum, dfden, nonc, 1000000)
            >>> NF = np.histogram(nc_vals, bins=50, density=True)
            >>> c_vals = np.random.f(dfnum, dfden, 1000000)
            >>> F = np.histogram(c_vals, bins=50, density=True)
            >>> import matplotlib.pyplot as plt
            >>> plt.plot(F[1][1:], F[0])
            >>> plt.plot(NF[1][1:], NF[0])
            >>> plt.show()

       XRStools.xrs_calctools.normal(loc=0.0, scale=1.0, size=None)
              Draw random samples from a normal (Gaussian) distribution.

              The  probability  density  function of the normal distribution, first derived by De Moivre and 200
              years later by both Gauss and Laplace independently
              [2]_
              , is often called the bell curve because of its characteristic shape (see the example below).

              The normal distributions occurs often in nature.  For example, it describes the commonly occurring
              distribution of samples influenced by a large number of tiny, random disturbances, each  with  its
              own unique distribution
              [2]_
              .

              NOTE:
                 New  code  should  use  the  normal  method of a default_rng() instance instead; please see the
                 random-quick-start.

              loc    float or array_like of floats Mean ("centre") of the distribution.

              scale  float or array_like of floats Standard deviation (spread or "width") of  the  distribution.
                     Must be non-negative.

              size   int  or tuple of ints, optional Output shape.  If the given shape is, e.g., (m, n, k), then
                     m * n * k samples are drawn.  If size is None (default), a single value is returned if  loc
                     and scale are both scalars.  Otherwise, np.broadcast(loc, scale).size samples are drawn.

              out    ndarray or scalar Drawn samples from the parameterized normal distribution.

              scipy.stats.norm
                     probability density function, distribution or cumulative density function, etc.

              Generator.normal: which should be used for new code.

              The probability density for the Gaussian distribution is

                                           p(x) = \frac{1}{\sqrt{ 2 \pi \sigma^2 }}
              e^{ - \frac{ (x - \mu)^2 } {2 \sigma^2} },

              where  \mu  is  the  mean and \sigma the standard deviation. The square of the standard deviation,
              \sigma^2, is called the variance.

              The function has its peak at the mean, and its "spread" increases with the standard deviation (the
              function reaches 0.607 times its maximum at x + \sigma and x - \sigma
              [2]_
              ).  This implies that normal is more likely to return samples lying close to the mean, rather than
              those far away.

       [1]  Wikipedia, "Normal distribution", https://en.wikipedia.org/wiki/Normal_distribution

       [2]  P. R. Peebles Jr., "Central Limit Theorem" in  "Probability,  Random  Variables  and  Random  Signal
            Principles", 4th ed., 2001, pp. 51, 51, 125.

            Draw samples from the distribution:

            >>> mu, sigma = 0, 0.1 # mean and standard deviation
            >>> s = np.random.normal(mu, sigma, 1000)

            Verify the mean and the variance:

            >>> abs(mu - np.mean(s))
            0.0  # may vary

            >>> abs(sigma - np.std(s, ddof=1))
            0.1  # may vary

            Display the histogram of the samples, along with the probability density function:

            >>> import matplotlib.pyplot as plt
            >>> count, bins, ignored = plt.hist(s, 30, density=True)
            >>> plt.plot(bins, 1/(sigma * np.sqrt(2 * np.pi)) *
            ...                np.exp( - (bins - mu)**2 / (2 * sigma**2) ),
            ...          linewidth=2, color='r')
            >>> plt.show()

            Two-by-four array of samples from N(3, 6.25):

            >>> np.random.normal(3, 2.5, size=(2, 4))
            array([[-4.49401501,  4.00950034, -1.81814867,  7.29718677],   # random
                   [ 0.39924804,  4.68456316,  4.99394529,  4.84057254]])  # random

       XRStools.xrs_calctools.pareto(a, size=None)
              Draw samples from a Pareto II or Lomax distribution with specified shape.

              The  Lomax  or  Pareto  II  distribution  is  a  shifted Pareto distribution. The classical Pareto
              distribution can be obtained from the Lomax distribution by adding 1 and multiplying by the  scale
              parameter  m  (see  Notes).   The  smallest  value of the Lomax distribution is zero while for the
              classical Pareto distribution it is mu, where the standard Pareto distribution has location  mu  =
              1.   Lomax  can  also be considered as a simplified version of the Generalized Pareto distribution
              (available in SciPy), with the scale set to one and the location set to zero.

              The Pareto distribution must be greater than zero, and is unbounded above.  It is  also  known  as
              the "80-20 rule".  In this distribution, 80 percent of the weights are in the lowest 20 percent of
              the range, while the other 20 percent fill the remaining 80 percent of the range.

              NOTE:
                 New  code  should  use  the  pareto  method of a default_rng() instance instead; please see the
                 random-quick-start.

              a      float or array_like of floats Shape of the distribution. Must be positive.

              size   int or tuple of ints, optional Output shape.  If the given shape is, e.g., (m, n, k),  then
                     m * n * k samples are drawn.  If size is None (default), a single value is returned if a is
                     a scalar.  Otherwise, np.array(a).size samples are drawn.

              out    ndarray or scalar Drawn samples from the parameterized Pareto distribution.

              scipy.stats.lomax
                     probability density function, distribution or cumulative density function, etc.

              scipy.stats.genpareto
                     probability density function, distribution or cumulative density function, etc.

              Generator.pareto: which should be used for new code.

              The probability density for the Pareto distribution is

                                                 p(x) = \frac{am^a}{x^{a+1}}

              where a is the shape and m the scale.

              The  Pareto  distribution,  named  after  the  Italian  economist  Vilfredo Pareto, is a power law
              probability distribution useful in many real world problems.  Outside the field of economics it is
              generally referred to as the Bradford distribution. Pareto developed the distribution to  describe
              the  distribution  of  wealth  in an economy.  It has also found use in insurance, web page access
              statistics, oil field sizes, and  many  other  problems,  including  the  download  frequency  for
              projects in Sourceforge
              [1]_
              .  It is one of the so-called "fat-tailed" distributions.

       [1]  Francis Hunt and Paul Johnson, On the Pareto Distribution of Sourceforge projects.

       [2]  Pareto, V. (1896). Course of Political Economy. Lausanne.

       [3]  Reiss,  R.D., Thomas, M.(2001), Statistical Analysis of Extreme Values, Birkhauser Verlag, Basel, pp
            23-30.

       [4]  Wikipedia, "Pareto distribution", https://en.wikipedia.org/wiki/Pareto_distribution

            Draw samples from the distribution:

            >>> a, m = 3., 2.  # shape and mode
            >>> s = (np.random.pareto(a, 1000) + 1) * m

            Display the histogram of the samples, along with the probability density function:

            >>> import matplotlib.pyplot as plt
            >>> count, bins, _ = plt.hist(s, 100, density=True)
            >>> fit = a*m**a / bins**(a+1)
            >>> plt.plot(bins, max(count)*fit/max(fit), linewidth=2, color='r')
            >>> plt.show()

       XRStools.xrs_calctools.parseOCEANinputFile(fname)
              parseOCEANinputFile

              Parses an OCEAN input file and returns lattice vectors, atom names, and relative atom positions.

              Args:

                     • fname (str): Absolute filename of OCEAN input file.

                     • atoms (list): List of elemental symbols in the same order as they  appear  in  the  input
                       file.

              Returns:

                     • lattice (np.array): Array of lattice vectors.

                     • rel_coords (np.array): Array of relative atomic coordinates.

                     • oceaatoms (list): List of atomic names.

       XRStools.xrs_calctools.parsePwscfFile(fname)
              parsePwscfFile

              Parses a PWSCF file and returns a xyzBox object.

              Args:  fname (str): Absolute filename of OCEAN input file.

              Returns:
                     xyzBox object

       XRStools.xrs_calctools.parseVaspFile(fname)
              parseVaspFile

              Parses a VASPS file and returns a xyzBox object.

              Args:  fname (str): Absolute filename of VASP file.

              Returns:
                     xyzBox object

       XRStools.xrs_calctools.parseXYZfile(filename)
              parseXYZfile Reads an xyz-style file.

       XRStools.xrs_calctools.permutation(x)
              Randomly permute a sequence, or return a permuted range.

              If x is a multi-dimensional array, it is only shuffled along its first index.

              NOTE:
                 New  code should use the permutation method of a default_rng() instance instead; please see the
                 random-quick-start.

              x      int or array_like If x is an integer, randomly permute np.arange(x).  If  x  is  an  array,
                     make a copy and shuffle the elements randomly.

              out    ndarray Permuted sequence or array range.

              Generator.permutation: which should be used for new code.

              >>> np.random.permutation(10)
              array([1, 7, 4, 3, 0, 9, 2, 5, 8, 6]) # random

              >>> np.random.permutation([1, 4, 9, 12, 15])
              array([15,  1,  9,  4, 12]) # random

              >>> arr = np.arange(9).reshape((3, 3))
              >>> np.random.permutation(arr)
              array([[6, 7, 8], # random
                     [0, 1, 2],
                     [3, 4, 5]])

       XRStools.xrs_calctools.poisson(lam=1.0, size=None)
              Draw samples from a Poisson distribution.

              The Poisson distribution is the limit of the binomial distribution for large N.

              NOTE:
                 New  code  should  use  the  poisson method of a default_rng() instance instead; please see the
                 random-quick-start.

              lam    float or array_like of floats Expected number of events occurring in a fixed-time interval,
                     must be >= 0. A sequence must be broadcastable over the requested size.

              size   int or tuple of ints, optional Output shape.  If the given shape is, e.g., (m, n, k),  then
                     m  * n * k samples are drawn.  If size is None (default), a single value is returned if lam
                     is a scalar. Otherwise, np.array(lam).size samples are drawn.

              out    ndarray or scalar Drawn samples from the parameterized Poisson distribution.

              Generator.poisson: which should be used for new code.

              The Poisson distribution

                                       f(k; \lambda)=\frac{\lambda^k e^{-\lambda}}{k!}

              For events with an expected separation \lambda the Poisson distribution  f(k;  \lambda)  describes
              the probability of k events occurring within the observed interval \lambda.

              Because the output is limited to the range of the C int64 type, a ValueError is raised when lam is
              within 10 sigma of the maximum representable value.

       [1]  Weisstein,   Eric   W.   "Poisson   Distribution."    From   MathWorld--A   Wolfram   Web  Resource.
            http://mathworld.wolfram.com/PoissonDistribution.html

       [2]  Wikipedia, "Poisson distribution", https://en.wikipedia.org/wiki/Poisson_distribution

            Draw samples from the distribution:

            >>> import numpy as np
            >>> s = np.random.poisson(5, 10000)

            Display histogram of the sample:

            >>> import matplotlib.pyplot as plt
            >>> count, bins, ignored = plt.hist(s, 14, density=True)
            >>> plt.show()

            Draw each 100 values for lambda 100 and 500:

            >>> s = np.random.poisson(lam=(100., 500.), size=(100, 2))

       XRStools.xrs_calctools.power(a, size=None)
              Draws samples in [0, 1] from a power distribution with positive exponent a - 1.

              Also known as the power function distribution.

              NOTE:
                 New code should use the power method of  a  default_rng()  instance  instead;  please  see  the
                 random-quick-start.

              a      float or array_like of floats Parameter of the distribution. Must be non-negative.

              size   int  or tuple of ints, optional Output shape.  If the given shape is, e.g., (m, n, k), then
                     m * n * k samples are drawn.  If size is None (default), a single value is returned if a is
                     a scalar.  Otherwise, np.array(a).size samples are drawn.

              out    ndarray or scalar Drawn samples from the parameterized power distribution.

              ValueError
                     If a < 1.

              Generator.power: which should be used for new code.

              The probability density function is

                                           P(x; a) = ax^{a-1}, 0 \le x \le 1, a>0.

              The power function distribution is just the inverse of the Pareto distribution.  It  may  also  be
              seen as a special case of the Beta distribution.

              It is used, for example, in modeling the over-reporting of insurance claims.

       [1]  Christian  Kleiber,  Samuel  Kotz,  "Statistical  size  distributions  in  economics  and  actuarial
            sciences", Wiley, 2003.

       [2]  Heckert, N. A. and Filliben, James J. "NIST Handbook 148: Dataplot Reference Manual, Volume  2:  Let
            Subcommands  and Library Functions", National Institute of Standards and Technology Handbook Series,
            June 2003.  https://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/powpdf.pdf

            Draw samples from the distribution:

            >>> a = 5. # shape
            >>> samples = 1000
            >>> s = np.random.power(a, samples)

            Display the histogram of the samples, along with the probability density function:

            >>> import matplotlib.pyplot as plt
            >>> count, bins, ignored = plt.hist(s, bins=30)
            >>> x = np.linspace(0, 1, 100)
            >>> y = a*x**(a-1.)
            >>> normed_y = samples*np.diff(bins)[0]*y
            >>> plt.plot(x, normed_y)
            >>> plt.show()

            Compare the power function distribution to the inverse of the Pareto.

            >>> from scipy import stats
            >>> rvs = np.random.power(5, 1000000)
            >>> rvsp = np.random.pareto(5, 1000000)
            >>> xx = np.linspace(0,1,100)
            >>> powpdf = stats.powerlaw.pdf(xx,5)

            >>> plt.figure()
            >>> plt.hist(rvs, bins=50, density=True)
            >>> plt.plot(xx,powpdf,'r-')
            >>> plt.title('np.random.power(5)')

            >>> plt.figure()
            >>> plt.hist(1./(1.+rvsp), bins=50, density=True)
            >>> plt.plot(xx,powpdf,'r-')
            >>> plt.title('inverse of 1 + np.random.pareto(5)')

            >>> plt.figure()
            >>> plt.hist(1./(1.+rvsp), bins=50, density=True)
            >>> plt.plot(xx,powpdf,'r-')
            >>> plt.title('inverse of stats.pareto(5)')

       XRStools.xrs_calctools.rand(d0, d1, ..., dn)
              Random values in a given shape.

              NOTE:
                 This is a convenience function for users porting code from  Matlab,  and  wraps  random_sample.
                 That  function  takes a tuple to specify the size of the output, which is consistent with other
                 NumPy functions like numpy.zeros and numpy.ones.

              Create an array of the given shape and populate it with random samples from a uniform distribution
              over [0, 1).

              d0, d1, ..., dn
                     int, optional The dimensions of the returned array, must be non-negative.  If  no  argument
                     is given a single Python float is returned.

              out    ndarray, shape (d0, d1, ..., dn) Random values.

              random

              >>> np.random.rand(3,2)
              array([[ 0.14022471,  0.96360618],  #random
                     [ 0.37601032,  0.25528411],  #random
                     [ 0.49313049,  0.94909878]]) #random

       XRStools.xrs_calctools.randint(low, high=None, size=None, dtype=int)
              Return random integers from low (inclusive) to high (exclusive).

              Return  random  integers  from  the  "discrete uniform" distribution of the specified dtype in the
              "half-open" interval [low, high). If high is None (the default), then results are from [0, low).

              NOTE:
                 New code should use the integers method of a default_rng() instance  instead;  please  see  the
                 random-quick-start.

              low    int  or  array-like  of  ints  Lowest  (signed)  integers to be drawn from the distribution
                     (unless high=None, in which case this parameter is one above the highest such integer).

              high   int or array-like of ints, optional If provided, one above the largest (signed) integer  to
                     be  drawn from the distribution (see above for behavior if high=None).  If array-like, must
                     contain integer values

              size   int or tuple of ints, optional Output shape.  If the given shape is, e.g., (m, n, k),  then
                     m * n * k samples are drawn.  Default is None, in which case a single value is returned.

              dtype  dtype,  optional  Desired dtype of the result. Byteorder must be native.  The default value
                     is int.

                     New in version 1.11.0.

              out    int or  ndarray  of  ints  size-shaped  array  of  random  integers  from  the  appropriate
                     distribution, or a single such random int if size not provided.

              random_integers
                     similar  to randint, only for the closed interval [low, high], and 1 is the lowest value if
                     high is omitted.

              Generator.integers: which should be used for new code.

              >>> np.random.randint(2, size=10)
              array([1, 0, 0, 0, 1, 1, 0, 0, 1, 0]) # random
              >>> np.random.randint(1, size=10)
              array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])

              Generate a 2 x 4 array of ints between 0 and 4, inclusive:

              >>> np.random.randint(5, size=(2, 4))
              array([[4, 0, 2, 1], # random
                     [3, 2, 2, 0]])

              Generate a 1 x 3 array with 3 different upper bounds

              >>> np.random.randint(1, [3, 5, 10])
              array([2, 2, 9]) # random

              Generate a 1 by 3 array with 3 different lower bounds

              >>> np.random.randint([1, 5, 7], 10)
              array([9, 8, 7]) # random

              Generate a 2 by 4 array using broadcasting with dtype of uint8

              >>> np.random.randint([1, 3, 5, 7], [[10], [20]], dtype=np.uint8)
              array([[ 8,  6,  9,  7], # random
                     [ 1, 16,  9, 12]], dtype=uint8)

       XRStools.xrs_calctools.randn(d0, d1, ..., dn)
              Return a sample (or samples) from the "standard normal" distribution.

              NOTE:
                 This is a convenience function for users porting code from Matlab, and  wraps  standard_normal.
                 That  function  takes a tuple to specify the size of the output, which is consistent with other
                 NumPy functions like numpy.zeros and numpy.ones.

              NOTE:
                 New code should use the standard_normal method of a default_rng() instance instead; please  see
                 the random-quick-start.

              If  positive int_like arguments are provided, randn generates an array of shape (d0, d1, ..., dn),
              filled with random floats sampled from a univariate "normal" (Gaussian) distribution of mean 0 and
              variance 1. A single float randomly sampled from the distribution is returned if  no  argument  is
              provided.

              d0, d1, ..., dn
                     int,  optional  The dimensions of the returned array, must be non-negative.  If no argument
                     is given a single Python float is returned.

              Z      ndarray or float A (d0, d1, ...,  dn)-shaped  array  of  floating-point  samples  from  the
                     standard normal distribution, or a single such float if no parameters were supplied.

              standard_normal  : Similar, but takes a tuple as its argument.  normal : Also accepts mu and sigma
              arguments.  Generator.standard_normal: which should be used for new code.

              For random samples from N(\mu, \sigma^2), use:

              sigma * np.random.randn(...) + mu

              >>> np.random.randn()
              2.1923875335537315  # random

              Two-by-four array of samples from N(3, 6.25):

              >>> 3 + 2.5 * np.random.randn(2, 4)
              array([[-4.49401501,  4.00950034, -1.81814867,  7.29718677],   # random
                     [ 0.39924804,  4.68456316,  4.99394529,  4.84057254]])  # random

       XRStools.xrs_calctools.random(size=None)
              Return random floats in the half-open  interval  [0.0,  1.0).  Alias  for  random_sample  to  ease
              forward-porting to the new random API.

       XRStools.xrs_calctools.random_integers(low, high=None, size=None)
              Random integers of type np.int_ between low and high, inclusive.

              Return  random  integers  of  type  np.int_ from the "discrete uniform" distribution in the closed
              interval [low, high].  If high is None (the default), then results are from [1, low]. The  np.int_
              type translates to the C long integer type and its precision is platform dependent.

              This function has been deprecated. Use randint instead.

              Deprecated since version 1.11.0.

              low    int  Lowest  (signed) integer to be drawn from the distribution (unless high=None, in which
                     case this parameter is the highest such integer).

              high   int, optional If provided, the largest (signed) integer to be drawn from  the  distribution
                     (see above for behavior if high=None).

              size   int  or tuple of ints, optional Output shape.  If the given shape is, e.g., (m, n, k), then
                     m * n * k samples are drawn.  Default is None, in which case a single value is returned.

              out    int or  ndarray  of  ints  size-shaped  array  of  random  integers  from  the  appropriate
                     distribution, or a single such random int if size not provided.

              randint
                     Similar  to  random_integers,  only  for  the  half-open interval [low, high), and 0 is the
                     lowest value if high is omitted.

              To sample from N evenly spaced floating-point numbers between a and b, use:

                 a + (b - a) * (np.random.random_integers(N) - 1) / (N - 1.)

              >>> np.random.random_integers(5)
              4 # random
              >>> type(np.random.random_integers(5))
              <class 'numpy.int64'>
              >>> np.random.random_integers(5, size=(3,2))
              array([[5, 4], # random
                     [3, 3],
                     [4, 5]])

              Choose five random numbers from the set of five evenly-spaced numbers between 0 and 2.5, inclusive
              (i.e., from the set {0, 5/8, 10/8, 15/8, 20/8}):

              >>> 2.5 * (np.random.random_integers(5, size=(5,)) - 1) / 4.
              array([ 0.625,  1.25 ,  0.625,  0.625,  2.5  ]) # random

              Roll two six sided dice 1000 times and sum the results:

              >>> d1 = np.random.random_integers(1, 6, 1000)
              >>> d2 = np.random.random_integers(1, 6, 1000)
              >>> dsums = d1 + d2

              Display results as a histogram:

              >>> import matplotlib.pyplot as plt
              >>> count, bins, ignored = plt.hist(dsums, 11, density=True)
              >>> plt.show()

       XRStools.xrs_calctools.random_sample(size=None)
              Return random floats in the half-open interval [0.0, 1.0).

              Results are from the "continuous uniform"  distribution  over  the  stated  interval.   To  sample
              Unif[a, b), b > a multiply the output of random_sample by (b-a) and add a:

                 (b - a) * random_sample() + a

              NOTE:
                 New  code  should  use  the  random  method of a default_rng() instance instead; please see the
                 random-quick-start.

              size   int or tuple of ints, optional Output shape.  If the given shape is, e.g., (m, n, k),  then
                     m * n * k samples are drawn.  Default is None, in which case a single value is returned.

              out    float or ndarray of floats Array of random floats of shape size (unless size=None, in which
                     case a single float is returned).

              Generator.random: which should be used for new code.

              >>> np.random.random_sample()
              0.47108547995356098 # random
              >>> type(np.random.random_sample())
              <class 'float'>
              >>> np.random.random_sample((5,))
              array([ 0.30220482,  0.86820401,  0.1654503 ,  0.11659149,  0.54323428]) # random

              Three-by-two array of random numbers from [-5, 0):

              >>> 5 * np.random.random_sample((3, 2)) - 5
              array([[-3.99149989, -0.52338984], # random
                     [-2.99091858, -0.79479508],
                     [-1.23204345, -1.75224494]])

       XRStools.xrs_calctools.rayleigh(scale=1.0, size=None)
              Draw samples from a Rayleigh distribution.

              The \chi and Weibull distributions are generalizations of the Rayleigh.

              NOTE:
                 New  code  should  use  the rayleigh method of a default_rng() instance instead; please see the
                 random-quick-start.

              scale  float or array_like of floats, optional Scale, also equals the mode. Must be  non-negative.
                     Default is 1.

              size   int  or tuple of ints, optional Output shape.  If the given shape is, e.g., (m, n, k), then
                     m * n * k samples are drawn.  If size is None (default), a  single  value  is  returned  if
                     scale is a scalar.  Otherwise, np.array(scale).size samples are drawn.

              out    ndarray or scalar Drawn samples from the parameterized Rayleigh distribution.

              Generator.rayleigh: which should be used for new code.

              The probability density function for the Rayleigh distribution is

                               P(x;scale) = \frac{x}{scale^2}e^{\frac{-x^2}{2 \cdotp scale^2}}

              The  Rayleigh  distribution would arise, for example, if the East and North components of the wind
              velocity had identical zero-mean Gaussian  distributions.   Then  the  wind  speed  would  have  a
              Rayleigh distribution.

       [1]  Brighton               Webs               Ltd.,               "Rayleigh               Distribution,"
            https://web.archive.org/web/20090514091424/http://brighton-webs.co.uk:80/distributions/rayleigh.asp

       [2]  Wikipedia, "Rayleigh distribution" https://en.wikipedia.org/wiki/Rayleigh_distribution

            Draw values from the distribution and plot the histogram

            >>> from matplotlib.pyplot import hist
            >>> values = hist(np.random.rayleigh(3, 100000), bins=200, density=True)

            Wave heights tend to follow a Rayleigh distribution. If the  mean  wave  height  is  1  meter,  what
            fraction of waves are likely to be larger than 3 meters?

            >>> meanvalue = 1
            >>> modevalue = np.sqrt(2 / np.pi) * meanvalue
            >>> s = np.random.rayleigh(modevalue, 1000000)

            The percentage of waves larger than 3 meters is:

            >>> 100.*sum(s>3)/1000000.
            0.087300000000000003 # random

       XRStools.xrs_calctools.readxas(filename)
              function output = readxas(filename)%[e,p,s,px,py,pz] = readxas(filename)

              %  READSTF    Load  StoBe fort.11 (XAS output) data % %   [E,P,S,PX,PY,PZ] = READXAS(FILENAME) % %
              E        energy transfer [eV] %      P        dipole  transition  intensity  %       S         r^2
              transition  intensity  %       PX       dipole transition intensity along x %      PY       dipole
              transition  intensity  along  y  %       PZ        dipole  transition  intensity  along  z   %   %
              as line diagrams.  % %                             T Pylkkanen @ 2011-10-17

       XRStools.xrs_calctools.repair_h2o_molecules_pbc(h2o_mols, boxLength)

       XRStools.xrs_calctools.seed(self, seed=None)
              Reseed a legacy MT19937 BitGenerator

              This is a convenience, legacy function.

              The  best  practice  is to not reseed a BitGenerator, rather to recreate a new one. This method is
              here for legacy reasons.  This example demonstrates best practice.

              >>> from numpy.random import MT19937
              >>> from numpy.random import RandomState, SeedSequence
              >>> rs = RandomState(MT19937(SeedSequence(123456789)))
              # Later, you want to restart the stream
              >>> rs = RandomState(MT19937(SeedSequence(987654321)))

       XRStools.xrs_calctools.set_state(state)
              Set the internal state of the generator from a tuple.

              For use if one has reason to manually (re-)set the internal state of the bit generator used by the
              RandomState instance. By default, RandomState uses the "Mersenne Twister"
              [1]_
               pseudo-random number generating algorithm.

              state  {tuple(str, ndarray of 624 uints, int, int, float), dict} The state tuple has the following
                     items:

                     1. the string 'MT19937', specifying the Mersenne Twister algorithm.

                     2. a 1-D array of 624 unsigned integers keys.

                     3. an integer pos.

                     4. an integer has_gauss.

                     5. a float cached_gaussian.

                     If state is a dictionary, it is directly set using the BitGenerators state property.

              out    None Returns 'None' on success.

              get_state

              set_state and get_state are not needed to work with any of the random distributions in  NumPy.  If
              the internal state is manually altered, the user should know exactly what he/she is doing.

              For  backwards compatibility, the form (str, array of 624 uints, int) is also accepted although it
              is missing some information about the cached Gaussian value: state = ('MT19937', keys, pos).

       [1]  M. Matsumoto and T.  Nishimura,  "Mersenne  Twister:  A  623-dimensionally  equidistributed  uniform
            pseudorandom  number  generator," ACM Trans. on Modeling and Computer Simulation, Vol. 8, No. 1, pp.
            3-30, Jan. 1998.

       XRStools.xrs_calctools.shuffle(x)
              Modify a sequence in-place by shuffling its contents.

              This function only shuffles the array along the first axis of a multi-dimensional array. The order
              of sub-arrays is changed but their contents remains the same.

              NOTE:
                 New code should use the shuffle method of a default_rng()  instance  instead;  please  see  the
                 random-quick-start.

              x      ndarray or MutableSequence The array, list or mutable sequence to be shuffled.

              None

              Generator.shuffle: which should be used for new code.

              >>> arr = np.arange(10)
              >>> np.random.shuffle(arr)
              >>> arr
              [1 7 5 2 9 4 3 6 0 8] # random

              Multi-dimensional arrays are only shuffled along the first axis:

              >>> arr = np.arange(9).reshape((3, 3))
              >>> np.random.shuffle(arr)
              >>> arr
              array([[3, 4, 5], # random
                     [6, 7, 8],
                     [0, 1, 2]])

       XRStools.xrs_calctools.sorter(elem)

       XRStools.xrs_calctools.spline2(x, y, x2)
              Extrapolates the smaller and larger valuea as a constant

       XRStools.xrs_calctools.standard_cauchy(size=None)
              Draw samples from a standard Cauchy distribution with mode = 0.

              Also known as the Lorentz distribution.

              NOTE:
                 New  code should use the standard_cauchy method of a default_rng() instance instead; please see
                 the random-quick-start.

              size   int or tuple of ints, optional Output shape.  If the given shape is, e.g., (m, n, k),  then
                     m * n * k samples are drawn.  Default is None, in which case a single value is returned.

              samples
                     ndarray or scalar The drawn samples.

              Generator.standard_cauchy: which should be used for new code.

              The probability density function for the full Cauchy distribution is

                                      P(x; x_0, \gamma) = \frac{1}{\pi \gamma \bigl[ 1+
              (\frac{x-x_0}{\gamma})^2 \bigr] }

              and the Standard Cauchy distribution just sets x_0=0 and \gamma=1

              The Cauchy distribution arises in the solution to the driven harmonic oscillator problem, and also
              describes  spectral  line broadening. It also describes the distribution of values at which a line
              tilted at a random angle will cut the x axis.

              When studying hypothesis tests that assume normality, seeing how the tests perform on data from  a
              Cauchy distribution is a good indicator of their sensitivity to a heavy-tailed distribution, since
              the Cauchy looks very much like a Gaussian distribution, but with heavier tails.

       [1]  NIST/SEMATECH      e-Handbook      of      Statistical      Methods,      "Cauchy     Distribution",
            https://www.itl.nist.gov/div898/handbook/eda/section3/eda3663.htm

       [2]  Weisstein,   Eric   W.   "Cauchy   Distribution."   From   MathWorld--A   Wolfram   Web    Resource.
            http://mathworld.wolfram.com/CauchyDistribution.html

       [3]  Wikipedia, "Cauchy distribution" https://en.wikipedia.org/wiki/Cauchy_distribution

            Draw samples and plot the distribution:

            >>> import matplotlib.pyplot as plt
            >>> s = np.random.standard_cauchy(1000000)
            >>> s = s[(s>-25) & (s<25)]  # truncate distribution so it plots well
            >>> plt.hist(s, bins=100)
            >>> plt.show()

       XRStools.xrs_calctools.standard_exponential(size=None)
              Draw samples from the standard exponential distribution.

              standard_exponential is identical to the exponential distribution with a scale parameter of 1.

              NOTE:
                 New code should use the standard_exponential method of a default_rng() instance instead; please
                 see the random-quick-start.

              size   int  or tuple of ints, optional Output shape.  If the given shape is, e.g., (m, n, k), then
                     m * n * k samples are drawn.  Default is None, in which case a single value is returned.

              out    float or ndarray Drawn samples.

              Generator.standard_exponential: which should be used for new code.

              Output a 3x8000 array:

              >>> n = np.random.standard_exponential((3, 8000))

       XRStools.xrs_calctools.standard_gamma(shape, size=None)
              Draw samples from a standard Gamma distribution.

              Samples are drawn from a Gamma distribution with specified parameters, shape (sometimes designated
              "k") and scale=1.

              NOTE:
                 New code should use the standard_gamma method of a default_rng() instance instead;  please  see
                 the random-quick-start.

              shape  float or array_like of floats Parameter, must be non-negative.

              size   int  or tuple of ints, optional Output shape.  If the given shape is, e.g., (m, n, k), then
                     m * n * k samples are drawn.  If size is None (default), a  single  value  is  returned  if
                     shape is a scalar.  Otherwise, np.array(shape).size samples are drawn.

              out    ndarray or scalar Drawn samples from the parameterized standard gamma distribution.

              scipy.stats.gamma
                     probability density function, distribution or cumulative density function, etc.

              Generator.standard_gamma: which should be used for new code.

              The probability density for the Gamma distribution is

                                    p(x) = x^{k-1}\frac{e^{-x/\theta}}{\theta^k\Gamma(k)},

              where k is the shape and \theta the scale, and \Gamma is the Gamma function.

              The  Gamma  distribution is often used to model the times to failure of electronic components, and
              arises naturally in processes for which the waiting times between Poisson distributed  events  are
              relevant.

       [1]  Weisstein,    Eric    W.   "Gamma   Distribution."   From   MathWorld--A   Wolfram   Web   Resource.
            http://mathworld.wolfram.com/GammaDistribution.html

       [2]  Wikipedia, "Gamma distribution", https://en.wikipedia.org/wiki/Gamma_distribution

            Draw samples from the distribution:

            >>> shape, scale = 2., 1. # mean and width
            >>> s = np.random.standard_gamma(shape, 1000000)

            Display the histogram of the samples, along with the probability density function:

            >>> import matplotlib.pyplot as plt
            >>> import scipy.special as sps
            >>> count, bins, ignored = plt.hist(s, 50, density=True)
            >>> y = bins**(shape-1) * ((np.exp(-bins/scale))/
            ...                       (sps.gamma(shape) * scale**shape))
            >>> plt.plot(bins, y, linewidth=2, color='r')
            >>> plt.show()

       XRStools.xrs_calctools.standard_normal(size=None)
              Draw samples from a standard Normal distribution (mean=0, stdev=1).

              NOTE:
                 New code should use the standard_normal method of a default_rng() instance instead; please  see
                 the random-quick-start.

              size   int  or tuple of ints, optional Output shape.  If the given shape is, e.g., (m, n, k), then
                     m * n * k samples are drawn.  Default is None, in which case a single value is returned.

              out    float or ndarray A floating-point array of shape size of drawn samples, or a single  sample
                     if size was not specified.

              normal :
                     Equivalent  function  with  additional  loc  and  scale  arguments for setting the mean and
                     standard deviation.

              Generator.standard_normal: which should be used for new code.

              For random samples from N(\mu, \sigma^2), use one of:

                 mu + sigma * np.random.standard_normal(size=...)
                 np.random.normal(mu, sigma, size=...)

              >>> np.random.standard_normal()
              2.1923875335537315 #random

              >>> s = np.random.standard_normal(8000)
              >>> s
              array([ 0.6888893 ,  0.78096262, -0.89086505, ...,  0.49876311,  # random
                     -0.38672696, -0.4685006 ])                                # random
              >>> s.shape
              (8000,)
              >>> s = np.random.standard_normal(size=(3, 4, 2))
              >>> s.shape
              (3, 4, 2)

              Two-by-four array of samples from N(3, 6.25):

              >>> 3 + 2.5 * np.random.standard_normal(size=(2, 4))
              array([[-4.49401501,  4.00950034, -1.81814867,  7.29718677],   # random
                     [ 0.39924804,  4.68456316,  4.99394529,  4.84057254]])  # random

       XRStools.xrs_calctools.standard_t(df, size=None)
              Draw samples from a standard Student's t distribution with df degrees of freedom.

              A special case of the hyperbolic distribution.  As df gets large, the result resembles that of the
              standard normal distribution (standard_normal).

              NOTE:
                 New code should use the standard_t method of a default_rng() instance instead; please  see  the
                 random-quick-start.

              df     float or array_like of floats Degrees of freedom, must be > 0.

              size   int  or tuple of ints, optional Output shape.  If the given shape is, e.g., (m, n, k), then
                     m * n * k samples are drawn.  If size is None (default), a single value is returned  if  df
                     is a scalar.  Otherwise, np.array(df).size samples are drawn.

              out    ndarray or scalar Drawn samples from the parameterized standard Student's t distribution.

              Generator.standard_t: which should be used for new code.

              The probability density function for the t distribution is

                                    P(x, df) = \frac{\Gamma(\frac{df+1}{2})}{\sqrt{\pi df}
              \Gamma(\frac{df}{2})}\Bigl( 1+\frac{x^2}{df} \Bigr)^{-(df+1)/2}

              The  t  test  is  based on an assumption that the data come from a Normal distribution. The t test
              provides a way to test whether the sample mean (that is the mean calculated from the  data)  is  a
              good estimate of the true mean.

              The  derivation  of the t-distribution was first published in 1908 by William Gosset while working
              for the Guinness Brewery in Dublin.  Due  to  proprietary  issues,  he  had  to  publish  under  a
              pseudonym, and so he used the name Student.

       [1]  Dalgaard, Peter, "Introductory Statistics With R", Springer, 2002.

       [2]  Wikipedia, "Student's t-distribution" https://en.wikipedia.org/wiki/Student's_t-distribution

            From Dalgaard page 83
            [1]_
            , suppose the daily energy intake for 11 women in kilojoules (kJ) is:

            >>> intake = np.array([5260., 5470, 5640, 6180, 6390, 6515, 6805, 7515, \
            ...                    7515, 8230, 8770])

            Does  their  energy  intake  deviate  systematically from the recommended value of 7725 kJ? Our null
            hypothesis will be the absence of deviation, and the alternate hypothesis will be the presence of an
            effect that could be either positive or negative, hence making our test 2-tailed.

            Because we are estimating the mean and we have N=11 values in our sample, we have N-1=10 degrees  of
            freedom.  We  set our significance level to 95% and compute the t statistic using the empirical mean
            and empirical standard deviation of our intake. We use a ddof of 1 to base the  computation  of  our
            empirical  standard  deviation  on an unbiased estimate of the variance (note: the final estimate is
            not unbiased due to the concave nature of the square root).

            >>> np.mean(intake)
            6753.636363636364
            >>> intake.std(ddof=1)
            1142.1232221373727
            >>> t = (np.mean(intake)-7725)/(intake.std(ddof=1)/np.sqrt(len(intake)))
            >>> t
            -2.8207540608310198

            We draw 1000000 samples from Student's t distribution with the adequate degrees of freedom.

            >>> import matplotlib.pyplot as plt
            >>> s = np.random.standard_t(10, size=1000000)
            >>> h = plt.hist(s, bins=100, density=True)

            Does our t statistic land  in  one  of  the  two  critical  regions  found  at  both  tails  of  the
            distribution?

            >>> np.sum(np.abs(t) < np.abs(s)) / float(len(s))
            0.018318  #random < 0.05, statistic is in critical region

            The  probability  value  for  this  2-tailed  test  is  about  1.83%,  which  is  lower  than the 5%
            pre-determined significance threshold.

            Therefore, the probability of observing values as extreme as our intake conditionally  on  the  null
            hypothesis being true is too low, and we reject the null hypothesis of no deviation.

       class XRStools.xrs_calctools.stobe(prefix, postfix, fromnumber, tonumber, step, stepformat=2)
              Bases: object

              class to analyze StoBe results

              broaden_lin(params=[0.8, 8, 537.5, 550], npoints=1000)

              cut_rawspecs(emin=None, emax=None)

              norm_area(emin, emax)

              sum_specs()

       XRStools.xrs_calctools.translateOcean2FDMNES_p1(ocean_in, fdmnes_out, header_file)

       XRStools.xrs_calctools.triangular(left, mode, right, size=None)
              Draw samples from the triangular distribution over the interval [left, right].

              The  triangular  distribution is a continuous probability distribution with lower limit left, peak
              at mode, and upper limit right. Unlike the other distributions, these parameters  directly  define
              the shape of the pdf.

              NOTE:
                 New  code  should use the triangular method of a default_rng() instance instead; please see the
                 random-quick-start.

              left   float or array_like of floats Lower limit.

              mode   float or array_like of floats The value where the peak of  the  distribution  occurs.   The
                     value must fulfill the condition left <= mode <= right.

              right  float or array_like of floats Upper limit, must be larger than left.

              size   int  or tuple of ints, optional Output shape.  If the given shape is, e.g., (m, n, k), then
                     m * n * k samples are drawn.  If size is None (default), a  single  value  is  returned  if
                     left,  mode,  and  right  are all scalars.  Otherwise, np.broadcast(left, mode, right).size
                     samples are drawn.

              out    ndarray or scalar Drawn samples from the parameterized triangular distribution.

              Generator.triangular: which should be used for new code.

              The probability density function for the triangular distribution is

                                                 P(x;l, m, r) = \begin{cases}
              \frac{2(x-l)}{(r-l)(m-l)}& \text{for $l \leq x \leq m$},\\ \frac{2(r-x)}{(r-l)(r-m)}& \text{for $m
              \leq x \leq r$},\\ 0& \text{otherwise}.  \end{cases}

              The  triangular  distribution  is  often  used  in  ill-defined  problems  where  the   underlying
              distribution  is  not known, but some knowledge of the limits and mode exists. Often it is used in
              simulations.

       [1]  Wikipedia, "Triangular distribution" https://en.wikipedia.org/wiki/Triangular_distribution

            Draw values from the distribution and plot the histogram:

            >>> import matplotlib.pyplot as plt
            >>> h = plt.hist(np.random.triangular(-3, 0, 8, 100000), bins=200,
            ...              density=True)
            >>> plt.show()

       XRStools.xrs_calctools.uniform(low=0.0, high=1.0, size=None)
              Draw samples from a uniform distribution.

              Samples are uniformly distributed over the half-open  interval  [low,  high)  (includes  low,  but
              excludes high).  In other words, any value within the given interval is equally likely to be drawn
              by uniform.

              NOTE:
                 New  code  should  use  the  uniform method of a default_rng() instance instead; please see the
                 random-quick-start.

              low    float or array_like of floats, optional Lower boundary of the output interval.  All  values
                     generated will be greater than or equal to low.  The default value is 0.

              high   float  or array_like of floats Upper boundary of the output interval.  All values generated
                     will be less than or equal to high.  The default value is 1.0.

              size   int or tuple of ints, optional Output shape.  If the given shape is, e.g., (m, n, k),  then
                     m  * n * k samples are drawn.  If size is None (default), a single value is returned if low
                     and high are both scalars.  Otherwise, np.broadcast(low, high).size samples are drawn.

              out    ndarray or scalar Drawn samples from the parameterized uniform distribution.

              randint : Discrete uniform distribution, yielding integers.  random_integers  :  Discrete  uniform
              distribution over the closed
                 interval [low, high].

              random_sample : Floats uniformly distributed over [0, 1).  random : Alias for random_sample.  rand
              : Convenience function that accepts dimensions as input, e.g.,
                 rand(2,2) would generate a 2-by-2 array of floats, uniformly distributed over [0, 1).

              Generator.uniform: which should be used for new code.

              The probability density function of the uniform distribution is

                                                    p(x) = \frac{1}{b - a}

              anywhere within the interval [a, b), and zero elsewhere.

              When  high  ==  low,  values  of  low will be returned.  If high < low, the results are officially
              undefined and may eventually raise an error, i.e. do not rely on  this  function  to  behave  when
              passed  arguments  satisfying  that  inequality  condition.  The high limit may be included in the
              returned array of floats due to floating-point  rounding  in  the  equation  low  +  (high-low)  *
              random_sample(). For example:

              >>> x = np.float32(5*0.99999999)
              >>> x
              5.0

              Draw samples from the distribution:

              >>> s = np.random.uniform(-1,0,1000)

              All values are within the given interval:

              >>> np.all(s >= -1)
              True
              >>> np.all(s < 0)
              True

              Display the histogram of the samples, along with the probability density function:

              >>> import matplotlib.pyplot as plt
              >>> count, bins, ignored = plt.hist(s, 15, density=True)
              >>> plt.plot(bins, np.ones_like(bins), linewidth=2, color='r')
              >>> plt.show()

       XRStools.xrs_calctools.vaspBoxParser(filename)
              groTrajecParser Parses an gromacs GRO-style file for the xyzBox class.

       XRStools.xrs_calctools.vaspTrajecParser(filename, min_boxes=0, max_boxes=1000)
              groTrajecParser Parses an gromacs GRO-style file for the xyzBox class.

       XRStools.xrs_calctools.vonmises(mu, kappa, size=None)
              Draw samples from a von Mises distribution.

              Samples  are  drawn from a von Mises distribution with specified mode (mu) and dispersion (kappa),
              on the interval [-pi, pi].

              The von Mises distribution (also known as  the  circular  normal  distribution)  is  a  continuous
              probability distribution on the unit circle.  It may be thought of as the circular analogue of the
              normal distribution.

              NOTE:
                 New  code  should  use  the vonmises method of a default_rng() instance instead; please see the
                 random-quick-start.

              mu     float or array_like of floats Mode ("center") of the distribution.

              kappa  float or array_like of floats Dispersion of the distribution, has to be >=0.

              size   int or tuple of ints, optional Output shape.  If the given shape is, e.g., (m, n, k),  then
                     m  *  n * k samples are drawn.  If size is None (default), a single value is returned if mu
                     and kappa are both scalars.  Otherwise, np.broadcast(mu, kappa).size samples are drawn.

              out    ndarray or scalar Drawn samples from the parameterized von Mises distribution.

              scipy.stats.vonmises
                     probability density function, distribution, or cumulative density function, etc.

              Generator.vonmises: which should be used for new code.

              The probability density for the von Mises distribution is

                                    p(x) = \frac{e^{\kappa cos(x-\mu)}}{2\pi I_0(\kappa)},

              where \mu is the mode and \kappa the dispersion, and I_0(\kappa) is the modified  Bessel  function
              of order 0.

              The  von  Mises  is named for Richard Edler von Mises, who was born in Austria-Hungary, in what is
              now the Ukraine.  He fled to the United States in 1939 and became  a  professor  at  Harvard.   He
              worked in probability theory, aerodynamics, fluid mechanics, and philosophy of science.

       [1]  Abramowitz,  M. and Stegun, I. A. (Eds.). "Handbook of Mathematical Functions with Formulas, Graphs,
            and Mathematical Tables, 9th printing," New York: Dover, 1972.

       [2]  von Mises, R., "Mathematical Theory of Probability and Statistics", New York: Academic Press, 1964.

            Draw samples from the distribution:

            >>> mu, kappa = 0.0, 4.0 # mean and dispersion
            >>> s = np.random.vonmises(mu, kappa, 1000)

            Display the histogram of the samples, along with the probability density function:

            >>> import matplotlib.pyplot as plt
            >>> from scipy.special import i0
            >>> plt.hist(s, 50, density=True)
            >>> x = np.linspace(-np.pi, np.pi, num=51)
            >>> y = np.exp(kappa*np.cos(x-mu))/(2*np.pi*i0(kappa))
            >>> plt.plot(x, y, linewidth=2, color='r')
            >>> plt.show()

       XRStools.xrs_calctools.wald(mean, scale, size=None)
              Draw samples from a Wald, or inverse Gaussian, distribution.

              As the scale approaches infinity, the distribution becomes more like a Gaussian.  Some  references
              claim  that  the  Wald  is  an  inverse  Gaussian  with  mean  equal to 1, but this is by no means
              universal.

              The inverse Gaussian distribution was first studied in relationship to Brownian  motion.  In  1956
              M.C.K. Tweedie used the name inverse Gaussian because there is an inverse relationship between the
              time to cover a unit distance and distance covered in unit time.

              NOTE:
                 New  code  should  use  the  wald  method  of  a default_rng() instance instead; please see the
                 random-quick-start.

              mean   float or array_like of floats Distribution mean, must be > 0.

              scale  float or array_like of floats Scale parameter, must be > 0.

              size   int or tuple of ints, optional Output shape.  If the given shape is, e.g., (m, n, k),  then
                     m * n * k samples are drawn.  If size is None (default), a single value is returned if mean
                     and scale are both scalars.  Otherwise, np.broadcast(mean, scale).size samples are drawn.

              out    ndarray or scalar Drawn samples from the parameterized Wald distribution.

              Generator.wald: which should be used for new code.

              The probability density function for the Wald distribution is

                                      P(x;mean,scale) = \sqrt{\frac{scale}{2\pi x^3}}e^
              \frac{-scale(x-mean)^2}{2\cdotp mean^2x}

              As  noted  above  the  inverse  Gaussian  distribution first arise from attempts to model Brownian
              motion. It is also a competitor to the Weibull for use in reliability modeling and modeling  stock
              returns and interest rate processes.

       [1]  Brighton                 Webs                 Ltd.,                Wald                Distribution,
            https://web.archive.org/web/20090423014010/http://www.brighton-webs.co.uk:80/distributions/wald.asp

       [2]  Chhikara, Raj S., and Folks, J. Leroy, "The Inverse Gaussian Distribution: Theory : Methodology, and
            Applications", CRC Press, 1988.

       [3]  Wikipedia,                    "Inverse                    Gaussian                     distribution"
            https://en.wikipedia.org/wiki/Inverse_Gaussian_distribution

            Draw values from the distribution and plot the histogram:

            >>> import matplotlib.pyplot as plt
            >>> h = plt.hist(np.random.wald(3, 2, 100000), bins=200, density=True)
            >>> plt.show()

       XRStools.xrs_calctools.weibull(a, size=None)
              Draw samples from a Weibull distribution.

              Draw samples from a 1-parameter Weibull distribution with the given shape parameter a.

                                                      X = (-ln(U))^{1/a}

              Here, U is drawn from the uniform distribution over (0,1].

              The   more  common  2-parameter  Weibull,  including  a  scale  parameter  \lambda  is  just  X  =
              \lambda(-ln(U))^{1/a}.

              NOTE:
                 New code should use the weibull method of a default_rng()  instance  instead;  please  see  the
                 random-quick-start.

              a      float or array_like of floats Shape parameter of the distribution.  Must be nonnegative.

              size   int  or tuple of ints, optional Output shape.  If the given shape is, e.g., (m, n, k), then
                     m * n * k samples are drawn.  If size is None (default), a single value is returned if a is
                     a scalar.  Otherwise, np.array(a).size samples are drawn.

              out    ndarray or scalar Drawn samples from the parameterized Weibull distribution.

              scipy.stats.weibull_max scipy.stats.weibull_min scipy.stats.genextreme  gumbel  Generator.weibull:
              which should be used for new code.

              The  Weibull (or Type III asymptotic extreme value distribution for smallest values, SEV Type III,
              or Rosin-Rammler distribution) is one of a class of Generalized Extreme Value (GEV)  distributions
              used   in   modeling  extreme  value  problems.   This  class  includes  the  Gumbel  and  Frechet
              distributions.

              The probability density for the Weibull distribution is

                                                       p(x) = \frac{a}
              {\lambda}(\frac{x}{\lambda})^{a-1}e^{-(x/\lambda)^a},

              where a is the shape and \lambda the scale.

              The function has its peak (the mode) at \lambda(\frac{a-1}{a})^{1/a}.

              When a = 1, the Weibull distribution reduces to the exponential distribution.

       [1]  Waloddi Weibull, Royal Technical University, Stockholm, 1939 "A Statistical Theory Of  The  Strength
            Of  Materials",  Ingeniorsvetenskapsakademiens  Handlingar Nr 151, 1939, Generalstabens Litografiska
            Anstalts Forlag, Stockholm.

       [2]  Waloddi Weibull, "A Statistical Distribution Function of Wide  Applicability",  Journal  Of  Applied
            Mechanics ASME Paper 1951.

       [3]  Wikipedia, "Weibull distribution", https://en.wikipedia.org/wiki/Weibull_distribution

            Draw samples from the distribution:

            >>> a = 5. # shape
            >>> s = np.random.weibull(a, 1000)

            Display the histogram of the samples, along with the probability density function:

            >>> import matplotlib.pyplot as plt
            >>> x = np.arange(1,100.)/50.
            >>> def weib(x,n,a):
            ...     return (a / n) * (x / n)**(a - 1) * np.exp(-(x / n)**a)

            >>> count, bins, ignored = plt.hist(np.random.weibull(5.,1000))
            >>> x = np.arange(1,100.)/50.
            >>> scale = count.max()/weib(x, 1., 5.).max()
            >>> plt.plot(x, weib(x, 1., 5.)*scale)
            >>> plt.show()

       XRStools.xrs_calctools.writeFDMNESinput_file(xyzAtoms, fname, Filout, Range, Radius, Edge, NRIXS,
       Absorber, Green=False, SCF=False)
              writeFDMNESinput_file Writes an input file to be used for FDMNES.

       XRStools.xrs_calctools.writeFEFFinput_arb(fname, headerfile, xyzBox, exatom, edge)
              writeFEFFinput_arb

       XRStools.xrs_calctools.writeMD1Input(fname, box, headerfile, exatomNo=0)
              writeWFN1input  Writes  an  input  for  cp.x  by  Quantum  espresso  for  electronic wave function
              minimization.

       XRStools.xrs_calctools.writeOCEAN_XESInput(fname, box, headerfile, exatomNo=0)
              writeOCEAN_XESInput Writes an input for ONEAN XES calculation for 17 molecule water boxes.

       XRStools.xrs_calctools.writeOCEANinput(fname, headerfile, xyzBox, exatom, edge, subshell)
              writeOCEANinput

       XRStools.xrs_calctools.writeOCEANinput_arb(fname, headerfile, xyzBox, exatom, edge, subshell)
              writeOCEANinput

       XRStools.xrs_calctools.writeOCEANinput_full(fname, xyzBox, exatom, edge, subshell)
              Writes a complete OCEAN input file.

              Args:

                     • fname     (str): Filename for the input file to be written.

                     • xyzBox (xyzBox): Instance of the xyzBox class to be converted into an OCEAN input file.

                     • exatom    (str): Atomic symbol for the excited atom.

                     • edge      (int): Integer defining which shell to excite (e.g. 0 for  K-shell,  1  for  L,
                       etc.).

                     • subshell   (int):  Integer  defining  which  sub-shell to excite ( e.g. 0 for s, 1 for p,
                       etc.).

       XRStools.xrs_calctools.writeOCEANinput_new(fname, headerfile, xyzBox, exatom, edge, subshell)
              writeOCEANinput

       XRStools.xrs_calctools.writePWinuptFile(fname, box, param_dict)
              writePWinuptFile

       XRStools.xrs_calctools.writeRelXYZfile(filename, n_atoms, boxLength, title, xyzAtoms, inclAtomNames=True)

       XRStools.xrs_calctools.writeWFN1waterInput(fname, box, headerfile, exatomNo=0)
              writeWFN1input Writes an  input  for  cp.x  by  Quantum  espresso  for  electronic  wave  function
              minimization.

       XRStools.xrs_calctools.writeXYZfile(filename, numberOfAtoms, title, list_of_xyzAtoms)

       XRStools.xrs_calctools.writeXYZtrajectory(filename, boxes)

       class XRStools.xrs_calctools.xyzAtom(name, coordinates, number)
              Bases: object

              xyzAtom

              Class to hold information about and manipulate a single atom in xyz-style format.

              Args. :

                     • name (str): Atomic symbol.

                     • coordinates (np.array): Array of xyz-coordinates.

                     • number (int): Integer, e.g. number of atom in a cluster.

              getAnglePBCarb(atom2, atom3, lattice, lattice_inv, degrees=True)
                     get_angle Return angle between the three given atoms (as seen from atom2).

              getCoordinates()

              getDist(atom)

              getDistPBCarb(atom, lattice, lattice_inv)

              getNorm()

              load_spectrum(file_name)

              load_spectrum_all_pol(prefix, num_pols, printing=False)

              normalize_spectrum(normrange)

              translateSelf(vector)

              translateSelf_arb(lattice, lattice_inv, vector)

       class XRStools.xrs_calctools.xyzBox(xyzAtoms, boxLength=None, title=None)
              Bases: object

              xyzBox

              Class to hold information about and manipulate a xyz-periodic cubic box.

              Args.:

                     • xyzAtoms (list): List of instances of the xyzAtoms class that make up the molecule.

                     • boxLength (float): Box length.

              changeOHBondlength(fraction, oName='O', hName='H')
                     changeOHBondlength Changes all OH covalent bond lengths inside the box by a fraction.

              count_contact_pairs(name_1, name_2, cutoff, counter_name='contact_pair')

              count_hbonds(Roocut=3.6, Rohcut=2.4, Aoooh=30.0, counter_name='num_H_bonds',
              counter_name2='H_bond_angles')
                     count_hbonds  Counts  the  number  of  hydrogen bonds around all oxygen atoms and sets that
                     number as attribute to the accorting xyzAtom.

              count_neighbors(name1, name2, cutoff_low=0.0, cutoff_high=2.0, counter_name='num_OO_shell')
                     count_neighbors

                     Counts number of neighbors (of name2) around atom of name1.

                     Args:

                            • name1         (str): Name of first type of atom.

                            • name2         (str): Name of second type of atom.

                            • cutoff_low  (float): Lower cutoff (Angstrom).

                            • cutoff_high (float): Upper cutoff (Angstrom).

                            • counter_name  (str): Attribute namer under which  the result should be saved.

              deleteTip4pCOM()
                     deleteTip4pCOM Deletes the ficticious atoms used in the TIP4P water model.

              findMethAndHexMolecules(CO_cut=1.6, CH_cut=1.2, OH_cut=1.2, CC_cut=1.7)
                     CH3OH

              findMethanolMolecules(CO_cut=1.6, CH_cut=1.2, OH_cut=1.2)
                     CH3OH

              find_hydroniums(OH_cutoff=1.5)
                     find_hydroniums Returns a list of hydronium molecules.

              find_hydroxides(OH_cutoff=1.5)
                     find_hydroxides Returns a list of hydroxide molecules.

              find_tmao_molecules_arb(CH_cut=1.2, CN_cut=1.6, NO_cut=1.5, CC_cut=2.5)
                     find_tmao_molecules Returns a list of TMAO molecules.

              find_urea_molecules_arb(NH_cut=1.2, CN_cut=1.6, CO_cut=1.5)
                     find_urea_molecules Returns a list of Urea molecules.

              getCoordinates()
                     getCoordinates Return coordinates of all atoms in the cluster.

              getDistVectorPBC_arb(atom1, atom2)
                     getDistVectorPBC_arb

                     Calculates the distance vector between two atoms from an arbitrary simulation box using the
                     minimum image convention.

                     Args:  atom1 (obj): Instance of the xzyAtom class.  atom2 (obj): Instance  of  the  xzyAtom
                            class.

                     Returns:
                            The distance vector between the two atoms (np.array).

              getDistancePBC_arb(atom1, atom2)
                     getDistancePBC_arb  Calculates  the  distance of two atoms from an arbitrary simulation box
                     using the minimum image convention.

                     Args:  atom1 (obj): Instance of the xzyAtom class.  atom2 (obj): Instance  of  the  xzyAtom
                            class.

                     Returns:
                            The distance between the two atoms.

              getTetraParameter()
                     getTetraParameter  Returns  a  list of tetrahedrality paprameters, according to NATURE, VOL
                     409, 18 JANUARY (2001).

                     UNTESTED!!!

              get_OO_neighbors(Roocut=3.6)
                     get_OO_neighbors Returns list  of  numbers  of  nearest  oxygen  neighbors  within  readius
                     'Roocut'.

              get_OO_neighbors_pbc(Roocut=3.6)
                     get_OO_neighbors_pbc  Returns  a  list  of  numbers  of nearest oxygen atoms, uses periodic
                     boundary conditions.

              get_angle(atom1, atom2, atom3, degrees=True)
                     get_angle Return angle between the three given atoms (as seen from atom2).

              get_angle_arb(atom1, atom2, atom3, degrees=True)
                     get_angle Return angle between the three given atoms (as seen from atom2).

              get_atoms_by_name(name)
                     get_atoms_by_name Return a list of all xyzAtoms of a given name 'name'.

              get_atoms_from_molecules()
                     get_atoms_from_molecules Parses  all  atoms  inside  self.xyzMolecules  into  self.xyzAtoms
                     (useful for turning an xyzMolecule into an xyzBox).

              get_h2o_molecules(o_name='O', h_name='H')
                     get_h2o_molecules  Finds  all  water  molecules inside the box and collects them inside the
                     self.xyzMolecules attribute.

              get_h2o_molecules_arb(o_name='O', h_name='H')

              get_hbonds(Roocut=3.6, Rohcut=2.4, Aoooh=30.0)
                     get_hbonds Counts the hydrogen bonds inside the box, returns the number  of  H-bond  donors
                     and H-bond acceptors.

              multiplyBoxPBC(numShells)
                     multiplyBoxPBC  Applies  the  periodic boundary conditions and multiplies the box in shells
                     around the original.

              multiplyBoxPBC_arb(lx=[- 1, 1], ly=[- 1, 1], lz=[- 1, 1])
                     multiplyBoxPBC_arb Applies the periodic boundary  conditions  and  multiplies  the  box  in
                     shells around the original. Works with arbitrary lattices.

              normalize_arb_spectrum(normrange, attribute)

              normalize_spectrum(normrange)

              scatterPlot()
                     scatterPlot Opens a plot window with a scatter-plot of all coordinates of the box.

              setBoxLength(boxLength, angstrom=True)
                     setBoxLength Set the box length.

              translateAtomsMinimumImage(lattice, lattice_inv)
                     translateAtomsMinimumImage

                     Brings  back all atoms into the original box using periodic boundary conditions and minimal
                     image convention.

              writeBox(filename)
                     writeBox Creates an xyz-style text file with all coordinates of the box.

              writeClusters(cenatom_name, number, cutoff, prefix, postfix='.xyz')
                     writeXYZclusters Write water clusters into files.

              writeClusters_arb(cenatom_name, number, cutoff, prefix, postfix='.xyz', test_box_multiplyer=1)
                     writeXYZclusters Write water clusters into files.

              writeFDMNESinput(fname, Filout, Range, Radius, Edge, NRIXS, Absorber)
                     writeFDMNESinput Creates an input file to be used for q-dependent calculations with FDMNES.

              writeH2Oclusters(cutoff, prefix, postfix='.xyz', o_name='O', h_name='H')
                     writeXYZclusters Write water clusters into files.

              writeMoleculeCluster(molAtomList, fname, cutoff=None, numH2Omols=None, o_name='O', h_name='H',
              mol_center=None)
                     writeMoleculeCluster Careful, this works only for a single molecule in water.

              writeOCEANinput(fname, headerfile, exatom, edge, subshell)
                     writeOCEANinput Creates an OCEAN input file based on the headerfile.

              writeRelBox(filename, inclAtomNames=True)
                     writeRelBox Writes all relative atom coordinates into a text file (useful as OCEAN input).

       class XRStools.xrs_calctools.xyzMolecule(xyzAtoms, title=None)
              Bases: object

              xyzMolecule

              Class to hold information about and manipulate an xyz-style molecule.

              Args.:

                     • xyzAtoms (list): List of instances of the xyzAtoms class that make up the molecule.

              appendAtom(Atom)
                     appendAtom Add an xzyAtom to the molecule.

              getCoordinates()
                     getCoordinates Return coordinates of all atoms in the cluster.

              getCoordinates_name(name)
                     getCoordinates_name Return coordintes of all atoms with 'name'.

              getGeometricCenter()
                     getGeometricCenter Return the geometric center of the xyz-molecule.

              getGeometricCenter_arb(lattice, lattice_inv)

              get_atoms_by_name(name)
                     get_atoms_by_name Return a list of all xyzAtoms of a given name 'name'.

              popAtom(xyzAtom)
                     popAtom Delete an xyzAtom from the molecule.

              scatterPlot()
                     scatterPlot Opens a plot window with a scatter-plot of all coordinates of the molecule.

              translateAtomsMinimumImage(lattice, lattice_inv, center=array([0., 0., 0.]))
                     translateAtomsMinimumImage

                     Brings back all atoms into the original box using periodic boundary conditions and  minimal
                     image convention.

              translateSelf(vector)
                     translateSelf Translate all atoms of the molecule by a vector 'vector'.

              writeXYZfile(fname)
                     writeXYZfile Creates an xyz-style text file with all coordinates of the molecule.

       XRStools.xrs_calctools.xyzTrajecParser(filename, boxLength, firstBox=0, lastBox=- 1)
              Parses a Trajectory of xyz-files.

              Args:  filename (str): Filename of the xyz Trajectory file.

              Returns:
                     A list of xzyBoxes.

       class XRStools.xrs_calctools.xyzTrajectory(xyzBoxes)
              Bases: object

              getRDF(atom1='O', atom2='O', MAXBIN=1000, DELR=0.01, RHO=1.0)

              getRDF2_arb(atom1='O', atom2='O', MAXBIN=1000, DELR=0.01, RHO=1.0)

              getRDF_arb(atom1='O', atom2='O', MAXBIN=1000, DELR=0.01, RHO=1.0)

              loadAXSFtraj(filename)

              writeRandBox(filename)

              writeXYZtraj(filename)

       XRStools.xrs_calctools.zipf(a, size=None)
              Draw samples from a Zipf distribution.

              Samples are drawn from a Zipf distribution with specified parameter a > 1.

              The  Zipf  distribution  (also  known  as  the  zeta  distribution)  is  a  continuous probability
              distribution that satisfies Zipf's law: the frequency of an item is inversely proportional to  its
              rank in a frequency table.

              NOTE:
                 New  code  should  use  the  zipf  method  of  a default_rng() instance instead; please see the
                 random-quick-start.

              a      float or array_like of floats Distribution parameter. Must be greater than 1.

              size   int or tuple of ints, optional Output shape.  If the given shape is, e.g., (m, n, k),  then
                     m * n * k samples are drawn.  If size is None (default), a single value is returned if a is
                     a scalar. Otherwise, np.array(a).size samples are drawn.

              out    ndarray or scalar Drawn samples from the parameterized Zipf distribution.

              scipy.stats.zipf
                     probability density function, distribution, or cumulative density function, etc.

              Generator.zipf: which should be used for new code.

              The probability density for the Zipf distribution is

                                               p(x) = \frac{x^{-a}}{\zeta(a)},

              where \zeta is the Riemann Zeta function.

              It  is  named  for the American linguist George Kingsley Zipf, who noted that the frequency of any
              word in a sample of a language is inversely proportional to its rank in the frequency table.

       [1]  Zipf, G. K., "Selected Studies of the Principle of Relative Frequency in Language,"  Cambridge,  MA:
            Harvard Univ. Press, 1932.

            Draw samples from the distribution:

            >>> a = 2. # parameter
            >>> s = np.random.zipf(a, 1000)

            Display the histogram of the samples, along with the probability density function:

            >>> import matplotlib.pyplot as plt
            >>> from scipy import special

            Truncate s values at 50 so plot is interesting:

            >>> count, bins, ignored = plt.hist(s[s<50], 50, density=True)
            >>> x = np.arange(1., 50.)
            >>> y = x**(-a) / special.zetac(a)
            >>> plt.plot(x, y/max(y), linewidth=2, color='r')
            >>> plt.show()

   XRStools.xrs_extraction Module
       class XRStools.xrs_extraction.HF_dataset(data, formulas, stoich_weights, edges)
              Bases: object

              dataset  A class to hold all information from HF Compton profiles necessary to subtract background
              from the experiment.

              get_C_edges_av(element, edge, columns)

              get_C_total(columns)

              get_J_total_av(columns)

       class XRStools.xrs_extraction.edge_extraction(exp_data, formulas, stoich_weights, edges, prenormrange=[5,
       inf])
              Bases: object

              edge_extraction Class to destill core edge spectra from x-ray Raman scattering experiments.

              analyzerAverage(roi_numbers, errorweighing=True)
                     analyzerAverage Averages signals from several crystals before background subtraction.

                     Args:

                        •

                          roi_numbers
                                 list, str list of ROI numbers to average over of keyword for  analyzer  chamber
                                 (e.g. 'VD','VU','VB','HR','HL','HB')

                        •

                          errorweighing
                                 boolean  (True  by  default)  keyword  if error weighing should be used for the
                                 averaging or not

              removeCorePearsonAv(element, edge, range1, range2, weights=[2, 1], HFcore_shift=0.0, guess=None,
              scaling=None, return_background=False, show_plots=True)
                     removeCorePearsonAv

                     guess (list): [position, FWHM, shape, intensity, ax, b, scale  ]

              removeCorePearsonAv_new(element, edge, range1, range2, HFcore_shift=0.0, guess=None, scaling=None,
              return_background=False, reg_lam=10)
                     removeCorePearsonAv_new

              removePearsonAv(element, edge, range1, range2=None, weights=[2, 1], guess=None, scale=1.0,
              HFcore_shift=0.0)
                     removePearsonAv

              removePolyCoreAv(element, edge, range1, range2, weights=[1, 1], guess=[1.0, 0.0, 0.0],
              ewindow=100.0)
                     removePolyCoreAv Subtract a polynomial from averaged data guided by  the  HF  core  Compton
                     profile.

                     Args

                        • element : str String (e.g. 'Si') for the element you want to work on.

                        • edge: str String (e.g. 'K' or 'L23') for the edge to extract.

                        • range1 : list List with start and end value for fit-region 1.

                        • range2 : list List with start and end value for fit-region 2.

                        • weigths  :  list  of  ints  List  with weights for the respective fit-regions 1 and 2.
                          Default is [1,1].

                        • guess : list List of starting values for the fit. Default  is  [1.0,0.0,0.0]  (i.e.  a
                          quadratic  function.  Change  the  number  of  guess  values  to  get other degrees of
                          polynomials (i.e. [1.0, 0.0] for a constant, [1.0,0.0,0.0,0.0]  for  a  cubic,  etc.).
                          The  first  guess  value passed is for scaling of the experimental data to the HF core
                          Compton profile.

                        • ewindow: float Width of energy window used in the plot. Default is 100.0.

              save_average_Sqw(filename, emin=None, emax=None, normrange=None)
                     save_average_Sqw Save the S(q,w) into a ascii file (energy loss, S(q,w), Poisson errors).

                     Args:

                            • filename : str Filename for the ascii file.

                            • emin : float Use this to save only part of the spectrum.

                            • emax : float Use this to save only part of the spectrum.

                            • normrange : list of floats  E_start  and  E_end  for  possible  area-normalization
                              before saving.

       class XRStools.xrs_extraction.functorObjectV(y, eloss, hfcore, lam)
              Bases: object

              funct(a, eloss)

       XRStools.xrs_extraction.map_chamber_names(name)
              map_chamber_names Maps names of chambers to range of ROI numbers.

       class XRStools.xrs_extraction.valence_CP
              Bases: object

              valence_CP Class to organize information about extracted experimental valence Compton profiles.

              get_asymmetry()

              get_pzscale()

   XRStools.xrs_imaging Module
   XRStools.xrs_read Module
   XRStools.xrs_scans Module
   XRStools.xrs_ComptonProfiles Module
       class XRStools.xrs_ComptonProfiles.AtomProfile(element, filename, stoichiometry=1.0)
              Bases: object

              AtomProfile

              Class to construct and handle Hartree-Fock atomic Compton Profile of a single atoms.

              Attributes:

                     • filename : string Path and filename to the HF profile table.

                     • element : string Element symbol as in the periodic table.

                     • elementNr : int Number of the element as in the periodic table.

                     • shells : list of strings Names of the shells.

                     • edges : list List of edge onsets (eV).

                     • C_total : np.array Total core Compton profile.

                     • J_total : np.array Total Compton profile.

                     • V_total : np.array Total valence Compton profile.

                     • CperShell : dict. of np.arrays Core Compton profile per electron shell.

                     • JperShell : dict. of np.arrays Total Compton profile per electron shell.

                     • VperShell : dict. of np.arrays Valence Compton profile per electron shell.

                     • stoichiometry : float, optional Stoichiometric weight (default is 1.0).

                     • atomic_weight : float Atomic weight.

                     • atomic_density : float Density (g/cm**3).

                     • twotheta : float Scattering angle 2Th (degrees).

                     • alpha : float Incident angle (degrees).

                     • beta : float Exit angle (degrees).

                     • thickness : float Sample thickness (cm).

              absorptionCorrectProfiles(alpha, thickness, geometry='transmission')
                     absorptionCorrectProfiles

                     Apply absorption correction to the Compton profiles on energy loss scale.

                     Args:

                            • alpha :float Angle of incidence (degrees).

                            • beta : float Exit angle for the scattered x-rays (degrees). If 'beta' is negative,
                              transmission geometry is assumed, if 'beta' is positive, reflection geometry.

                            • thickness : float Sample thickness.

              get_elossProfiles(E0, twotheta, correctasym=None, valence_cutoff=20.0)
                     get_elossProfiles Convert the HF Compton profile on to energy loss scale.

                     Args: E0 : float
                        Analyzer energy, enery of the scattered r-rays.

                     twotheta
                            float or list of floats Scattering angle 2Th.

                     correctasym
                            float, optional Scaling factor to be multiplied to the asymmetry.

                     valence_cutoff
                            float,  optional  Energy  cut off as to what is considered the boundary between core
                            and valence.

              get_stoichiometry()

       class XRStools.xrs_ComptonProfiles.ComptonProfiles(element)
              Bases: object

              Class for multiple HF Compton profiles.

              This class should hold one or more instances of the  ComptonProfile  class  and  have  methods  to
              return  profiles  from  single  atoms,  single  shells,  all  atoms.  It  should  be able to apply
              corrections etc. on those...

              Attributes:

                     • element (string): Element symbol as in the periodic table.

                     • elementNr (int) : Number of the element as in the periodic table.

                     • shells (list)   :

                     • edges (list)    :

                     • C (np.array)    :

                     • J (np.array)    :

                     • V (np.array)    :

                     • CperShell (dict. of np.arrays):

                     • JperShell (dict. of np.arrays):

                     • VperShell (dict. of np.arrays):

       class XRStools.xrs_ComptonProfiles.FormulaProfile(formula, filename, weight=1)
              Bases: object

              FormulaProfile

              Class to construct and handle Hartree-Fock atomic Compton Profile of a single chemical compound.

              Attributes

                     • filename : string Path and filename to Biggs database.

                     • formula : string Chemical sum formula for  the  compound  of  interest  (e.g.  'SiO2'  or
                       'H2O').

                     • elements : list of strings List of atomic symbols that make up the chemical sum formula.

                     • stoichiometries  :  list  of  integers  List of the stoichimetric weights for each of the
                       elements in the list elements.

                     • element_Nrs : list of integers List of atomic numbers for each element  in  the  elements
                       list.

                     • AtomProfiles  : list of AtomProfiles List of instances of the AtomProfiles class for each
                       element in the list.

                     • eloss : np.ndarray Energy loss scale for the Compton profiles.

                     • C_total : np.ndarray Core HF Compton profile (one column per 2Th).

                     • J_total : np.ndarray Total HF Compton profile (one column per 2Th).

                     • V_total :np.ndarray Valence HF Compton profile (one column per 2Th).

                     • E0 : float Analyzer energy (keV).

                     • twotheta : float, list, or np.ndarray Value or list/np.ndarray of the scattering angle.

              get_correctecProfiles(densities, alpha, beta, samthick)

              get_elossProfiles(E0, twotheta, correctasym=None, valence_cutoff=20.0)

              get_stoichWeight()

       class XRStools.xrs_ComptonProfiles.HFProfile(formulas, stoich_weights, filename)
              Bases: object

              HFProfile

              Class to construct and handle Hartree-Fock atomic Compton Profile of sample  composed  of  several
              chemical compounds.

              Attributes

              get_elossProfiles(E0, twotheta, correctasym=None, valence_cutoff=20.0)

       XRStools.xrs_ComptonProfiles.HRcorrect(pzprofile, occupation, q)
              Returns the first order correction to filled 1s, 2s, and 2p Compton profiles.

              Implementation after Holm and Ribberfors (citation ...).

              Args:

                     • pzprofile  (np.array):  Compton  profile  (e.g. tabulated from Biggs) to be corrected (2D
                       matrix).

                     • occupation (list): electron configuration.

                     • q (float or np.array): momentum transfer in [a.u.].

              Returns:

                     • asymmetry (np.array):  asymmetries to be added to the raw  profiles  (normalized  to  the
                       number of electrons on pz scale)

       XRStools.xrs_ComptonProfiles.PzProfile(element, filename)
              Returnes tabulated HF Compton profiles.

              Reads  in  tabulated  HF  Compton profiles from the Biggs paper, interpolates them, and normalizes
              them to the # of electrons in the shell.

              Args:

                     • element (string):  element symbol (e.g. 'Si', 'Al', etc.)

                     • filename (string): absolute path and filename to tabulated profiles

              Returns:

                     • CP_profile (np.array): Matrix of the Compton profile * 1. column: pz-scale *  2.  ...  n.
                       columns: Compton profile of nth shell

                     • binding_energy (list): binding energies of shells

                     • occupation_num (list): number of electrons in the according shells

       class XRStools.xrs_ComptonProfiles.SqwPredict
              Bases: object

              Class to build a S(q,w) prediction based on HF Compton Profiles.

              Attributes:

                 • sampleStr (list of strings): one string per compound (e.g. ['C','SiO2'])

                 • concentrations (list of floats): relative compositional weight for each compound

       XRStools.xrs_ComptonProfiles.elossProfile(element, filename, E0, tth, correctasym=None,
       valence_cutoff=20.0)
              Returns HF Compton profiles on energy loss scale.

              Uses  the  PzProfile function to read read in Biggs HF profiles and converts them onto energy loss
              scale. The profiles are cut at the respective electron binding energies and are normalized to  the
              f-sum rule (i.e. S(q,w) is in units of [1/eV]).

              Args:

                     • element (string): element symbol.

                     • filename (string): absolute path and filename to tabulated Compton profiles.

                     • E0 (float): analyzer energy in [keV].

                     • tth (float): scattering angle two theta in [deg].

                     • correctasym (np.array): vector of scaling factors to be applied.

                     • valence_cutoff (float): energy value below which edges are considered as valence

              Returns:

                     • enScale (np.array): energy loss scale in [eV]

                     • J_total (np.array): total S(q,w) in [1/eV]

                     • C_total (np.array): core contribution to S(q,w) in [1/eV]

                     • V_total  (np.array):  valence contribution to S(q,w) in [1/eV], the valence is defined by
                       valence_cutoff

                     • q (np.array): momentum transfer in [a.u]

                     • J_shell (dict of np.arrays): dictionary of contributions for  each  shell,  the  key  are
                       defines as in Biggs table.

                     • C_shell (dict of np.arrays): same as J_shell for core contribution

                     • V_shell (dict of np.arrays): same as J_shell for valence contribution

       XRStools.xrs_ComptonProfiles.getAtomicDensity(Z)
              Returns the atomic density.

       XRStools.xrs_ComptonProfiles.getAtomicWeight(Z)
              Returns the atomic weight.

       XRStools.xrs_ComptonProfiles.list_duplicates(seq)

       XRStools.xrs_ComptonProfiles.mapShellNames(shell_str, atomicNumber)
              mapShellNames

              Translates to and from spectroscopic edge notation and the convention of the Biggs database.

              Args:

                     • shell_str : string Spectroscopic symbol to be converted to Biggs database convention.

                     • atomicNumber : int Z for the atom in question.

       XRStools.xrs_ComptonProfiles.parseChemFormula(ChemFormula)

       XRStools.xrs_ComptonProfiles.trapz_weights(x)

   XRStools.xrs_fileIO Module
       XRStools.xrs_fileIO.EdfRead(fname)

       XRStools.xrs_fileIO.FabioEdfRead(fname)
              Returns the EDF-data using FabIO.

       XRStools.xrs_fileIO.PrepareEdfMatrix(scan_length, num_pix_x, num_pix_y)
              Returns np.zeros of the shape of the detector.

       XRStools.xrs_fileIO.PrepareEdfMatrix_TwoImages(scan_length, num_pix_x, num_pix_y)
              Returns np.zeros for old data (horizontal and vertical Maxipix images in different files).

       XRStools.xrs_fileIO.PyMcaEdfRead(fname)
              Returns the EDF-data using PyMCA.

       XRStools.xrs_fileIO.PyMcaSpecRead(filename, nscan)
              Returns data, counter-names, and EDF-files using PyMCA.

       XRStools.xrs_fileIO.PyMcaSpecRead_my(filename, nscan)
              Returns data, counter-names, and EDF-files using PyMCA.

       XRStools.xrs_fileIO.ReadEdfImages(ccdcounter, num_pix_x, num_pix_y, path, EdfPrefix, EdfName, EdfPostfix)
              Reads  a series of EDF-images and returs them in a 3D Numpy array (horizontal and vertical Maxipix
              images in different files).

       XRStools.xrs_fileIO.ReadEdfImages_PyMca(ccdcounter, path, EdfPrefix, EdfName, EdfPostfix)
              Reads a series of EDF-images and returs them in a 3D Numpy array (horizontal and vertical  Maxipix
              images in different files).

       XRStools.xrs_fileIO.ReadEdfImages_TwoImages(ccdcounter, num_pix_x, num_pix_y, path, EdfPrefix_h,
       EdfPrefix_v, EdfNmae, EdfPostfix)
              Reads  a series of EDF-images and returs them in a 3D Numpy array (horizontal and vertical Maxipix
              images in different files).

       XRStools.xrs_fileIO.ReadEdfImages_my(ccdcounter, path, EdfPrefix, EdfName, EdfPostfix)
              Reads a series of EDF-images and returs them in a 3D Numpy array (horizontal and vertical  Maxipix
              images in different files).

       XRStools.xrs_fileIO.ReadEdf_justFirstImage(ccdcounter, path, EdfPrefix, EdfName, EdfPostfix)

       XRStools.xrs_fileIO.ReadScanFromFile(fname)
              Returns a scan stored in a Numpy archive.

       XRStools.xrs_fileIO.SilxSpecRead(filename, nscan)
              Returns data, motors, counter-names, and labels using Silx.

       XRStools.xrs_fileIO.SpecRead(filename, nscan)
              Parses a SPEC file and returns a specified scan.

              Args:

                     • filename (string): SPEC file name (inlc. path)

                     • nscan (int): Number of the desired scan.

              Returns:

                     • data (np.array): array of the data from the specified scan.

                     • motors (list): list of all motor positions from the header of the specified scan.

                     • counters (dict): all counters in a dictionary with the counter names as keys.

       XRStools.xrs_fileIO.WriteScanToFile(fname, data, motors, counters, edfmats)
              Writes a scan into a Numpy archive.

       XRStools.xrs_fileIO.dump_on_file_list(filename)

       XRStools.xrs_fileIO.myEdfRead(filename)
              Returns EDF-data, if PyMCA is not installed (this is slow).

       XRStools.xrs_fileIO.readbiggsdata(filename, element)
              Reads Hartree-Fock Profile of element 'element' from values tabulated by Biggs et al. (Atomic Data
              and   Nuclear   Data   Tables   16,   201-309   (1975))  as  provided  by  the  DABAX  library  (‐
              http://ftp.esrf.eu/pub/scisoft/xop2.3/DabaxFiles/ComptonProfiles.dat).  input: filename = path  to
              the  ComptonProfiles.dat file (the file should be distributed with this package) element  = string
              of element name returns: data     = the data for the according element as in the file:
                 #UD  Columns: #UD  col1: pz in atomic units #UD  col2: Total  compton  profile  (sum  over  the
                 atomic electrons #UD  col3,...coln: Compton profile for the individual sub-shells

              occupation  =  occupation  number  of  the  according  shells bindingen  = binding energies of the
              accorting shells colnames   = strings of column names as used in the file

   XRStools.xrs_prediction Module
   XRStools.xrs_rois Module
   XRStools.xrs_utilities Module
       XRStools.xrs_utilities.Chi(chi, degrees=True)
              rotation around (1,0,0), pos sense

       XRStools.xrs_utilities.HRcorrect(pzprofile, occupation, q)
              Returns the first order correction to filled 1s, 2s, and 2p Compton profiles.

              Implementation after Holm and Ribberfors (citation ...).

              Args:

                     • pzprofile (np.array): Compton profile (e.g. tabulated from Biggs)  to  be  corrected  (2D
                       matrix).

                     • occupation (list): electron configuration.

                     • q (float or np.array): momentum transfer in [a.u.].

              Returns:
                     asymmetry  (np.array):   asymmetries  to  be  added  to the raw profiles (normalized to the
                     number of electrons on pz scale)

       XRStools.xrs_utilities.NNMFcost(x, A, F, C, F_up, C_up, n, k, m)
              NNMFcost Returns cost and gradient for NNMF with constraints.

       XRStools.xrs_utilities.NNMFcost_der(x, A, F, C, F_up, C_up, n, k, m)

       XRStools.xrs_utilities.NNMFcost_old(x, A, W, H, W_up, H_up)
              NNMFcost Returns cost and gradient for NNMF with constraints.

       XRStools.xrs_utilities.Omega(omega, degrees=True)
              rotation around (0,0,1), pos sense

       XRStools.xrs_utilities.Phi(phi, degrees=True)
              rotation around (0,1,0), neg sense

       XRStools.xrs_utilities.Rx(chi, degrees=True)
              Rx Rotation matrix for vector rotations around the [1,0,0]-direction.

              Args:

                     • chi   (float) : Angle of rotation.

                     • degrees(bool) : Angle given in radians or degrees.

              Returns:

                     • 3x3 rotation matrix.

       XRStools.xrs_utilities.Ry(phi, degrees=True)
              Ry Rotation matrix for vector rotations around the [0,1,0]-direction.

              Args:

                     • phi   (float) : Angle of rotation.

                     • degrees(bool) : Angle given in radians or degrees.

              Returns:

                     • 3x3 rotation matrix.

       XRStools.xrs_utilities.Rz(omega, degrees=True)
              Rz Rotation matrix for vector rotations around the [0,0,1]-direction.

              Args:

                     • omega (float) : Angle of rotation.

                     • degrees(bool) : Angle given in radians or degrees.

              Returns:

                     • 3x3 rotation matrix.

       XRStools.xrs_utilities.TTsolver1D(el_energy, hkl=[6, 6, 0], crystal='Si', R=1.0, dev=array([- 50., - 49.,
       - 48., - 47., - 46., - 45., - 44., - 43., - 42., - 41., - 40., - 39., - 38., - 37., - 36., - 35., - 34.,
       - 33., - 32., - 31., - 30., - 29., - 28., - 27., - 26., - 25., - 24., - 23., - 22., - 21., - 20., - 19.,
       - 18., - 17., - 16., - 15., - 14., - 13., - 12., - 11., - 10., - 9., - 8., - 7., - 6., - 5., - 4., - 3.,
       - 2., - 1., 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19.,
       20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38., 39., 40.,
       41., 42., 43., 44., 45., 46., 47., 48., 49., 50., 51., 52., 53., 54., 55., 56., 57., 58., 59., 60., 61.,
       62., 63., 64., 65., 66., 67., 68., 69., 70., 71., 72., 73., 74., 75., 76., 77., 78., 79., 80., 81., 82.,
       83., 84., 85., 86., 87., 88., 89., 90., 91., 92., 93., 94., 95., 96., 97., 98., 99., 100., 101., 102.,
       103., 104., 105., 106., 107., 108., 109., 110., 111., 112., 113., 114., 115., 116., 117., 118., 119.,
       120., 121., 122., 123., 124., 125., 126., 127., 128., 129., 130., 131., 132., 133., 134., 135., 136.,
       137., 138., 139., 140., 141., 142., 143., 144., 145., 146., 147., 148., 149.]), alpha=0.0,
       chitable_prefix='/home/christoph/sources/XRStools/data/chitables/chitable_')
              TTsolver Solves the Takagi-Taupin equation for a bent crystal.

              This function is based on a Matlab implementation by S. Huotari of M. Krisch's Fortran programs.

              Args:

                     • el_energy (float): Fixed nominal (working) energy in keV.

                     • hkl (array): Reflection order vector, e.g. [6, 6, 0]

                     • crystal (str): Crystal used (can be silicon 'Si' or 'Ge')

                     • R (float): Crystal bending radius in m.

                     • dev (np.array): Deviation parameter (in arc. seconds) for which  the  reflectivity  curve
                       should be calculated.

                     • alpha (float): Crystal assymetry angle.

              Returns:

                     • refl (np.array): Reflectivity curve.

                     • e (np.array): Deviation from Bragg angle in meV.

                     • dev (np.array): Deviation from Bragg angle in microrad.

       XRStools.xrs_utilities.absCorrection(mu1, mu2, alpha, beta, samthick, geometry='transmission')
              absCorrection

              Calculates  absorption correction for given mu1 and mu2.  Multiply the measured spectrum with this
              correction factor.  This is a translation of Keijo Hamalainen's Matlab function (KH 30.05.96).

              Args

                     • mu1 : np.array  Absorption coefficient for the incident energy in [1/cm].

                     • mu2 : np.array Absorption coefficient for the scattered energy in [1/cm].

                     • alpha : float Incident angle relative to plane normal in [deg].

                     • beta : float  Exit angle relative to plane normal [deg].

                     • samthick : float  Sample thickness in [cm].

                     • geometry : string, optional Key word for  different  sample  geometries  ('transmission',
                       'reflection',  'sphere').   If  geometry  is  set  to  'sphere', no angular dependence is
                       assumed.

              Returns

                     • ac : np.array Absorption correction factor. Multiply this with your measured spectrum.

       XRStools.xrs_utilities.abscorr2(mu1, mu2, alpha, beta, samthick)
              Calculates absorption correction for given mu1 and mu2.  Multiply the measured spectrum with  this
              correction factor.

              This is a translation of Keijo Hamalainen's Matlab function (KH 30.05.96).

              Args:

                     • mu1 (np.array): absorption coefficient for the incident energy in [1/cm].

                     • mu2 (np.array): absorption coefficient for the scattered energy in [1/cm].

                     • alpha (float): incident angle relative to plane normal in [deg].

                     • beta  (float):  exit  angle relative to plane normal [deg] (for transmission geometry use
                       beta < 0).

                     • samthick (float): sample thickness in [cm].

              Returns:

                     • ac (np.array): absorption correction factor. Multiply this with your measured spectrum.

       XRStools.xrs_utilities.addch(xold, yold, n, n0=0, errors=None)
              #  ADDCH      Adds  contents  of  given  adjacent  channels  together  #  #            [x2,y2]   =
              addch(x,y,n,n0)  #            x   =  original  x-scale   (row  or  column vector) #           y  =
              original y-values (row or column vector) #           n  = number of channels to  be  summed  up  #
              n0  = offset for adding, default is 0 #           x2 = new x-scale #           y2 = new y-values #
              #           KH 17.09.1990 #        Modified 29.05.1995 to include offset

       XRStools.xrs_utilities.bidiag_reduction(A)
              function [U,B,V]=bidiag_reduction(A) % [U B V]=bidiag_reduction(A) % Algorithm 6.5-1  in  Golub  &
              Van  Loan, Matrix Computations % Johns Hopkins University Press % Finds an upper bidiagonal matrix
              B so that A=U*B*V' % with U,V orthogonal.  A is an m x n matrix

       XRStools.xrs_utilities.bootstrapCNNMF(A, F_ini, C_ini, F_up, C_up, Niter)
              bootstrapCNNMF  Constrained  non-negative  matrix  factorization  with  bootstrapping  for   error
              estimates.

       XRStools.xrs_utilities.bootstrapCNNMF_old(A, k, Aerr, F_ini, C_ini, F_up, C_up, Niter=100)
              bootstrapCNNMF   Constrained  non-negative  matrix  factorization  with  bootstrapping  for  error
              estimates.

       XRStools.xrs_utilities.bragg(hkl, e, xtal='Si')
              % BRAGG  Calculates Bragg angle for given reflection in  RAD  %       output=bangle(hkl,e,xtal)  %
              hkl  can be a matrix i.e. hkl=[1,0,0 ; 1,1,1]; %      e=energy in keV %      xtal='Si', 'Ge', etc.
              (check dspace.m) or d0 (Si default) % %      KH 28.09.93 %

       class XRStools.xrs_utilities.bragg_refl(crystal, hkl, alpha=0.0)
              Bases: object

              Dynamical theory of diffraction.

              get_chi(energy, crystal=None, hkl=None)

              get_nff(nff_path=None)

              get_polarization_factor(tth, case='sigma')
                     Calculate polarization factor.

              get_reflectivity(energy, delta_theta, case='sigma')

              get_reflectivity_bent(energy, delta_theta, R)

       XRStools.xrs_utilities.braggd(hkl, e, xtal='Si')
              #  BRAGGD   Calculates  Bragg  angle  for  given  reflection  in  deg  #        Call   BRAGG.M   #
              output=bangle(hkl,e,xtal)  #         hkl can be a matrix i.e. hkl=[1,0,0 ; 1,1,1]; #      e=energy
              in keV #      xtal='Si', 'Ge', etc. (check dspace.m) or d0 (Si default) # #      KH 28.09.93

       XRStools.xrs_utilities.cNNMF_chris(A, W_fixed, W_free, maxIter=100, verbose=True)

       XRStools.xrs_utilities.cixsUBfind(x, G, Q_sample, wi, wo, lambdai, lambdao)
              cixsUBfind

       XRStools.xrs_utilities.cixsUBgetAngles_primo(Q)

       XRStools.xrs_utilities.cixsUBgetAngles_secondo(Q)

       XRStools.xrs_utilities.cixsUBgetAngles_terzo(Q)

       XRStools.xrs_utilities.cixsUBgetQ_primo(tthv, tthh, psi)
              returns the Q0 given  the  detector  position  (tthv,  tth)  and  th  crystal  orientation.   This
              orientation is calculated considering :

                 the Bragg condition and the rotation around the G vector :
                        this rotation is defined by psi which is a rotation around G

       XRStools.xrs_utilities.cixsUBgetQ_secondo(tthv, tthh, psi)

       XRStools.xrs_utilities.cixsUBgetQ_terzo(tthv, tthh, psi)

       XRStools.xrs_utilities.cixs_primo(tthv, tthh, psi, anal_braggd=86.5)
              cixs_primo

       XRStools.xrs_utilities.cixs_secondo(tthv, tthh, psi, anal_braggd=86.5)
              cixs_secondo

       XRStools.xrs_utilities.cixs_terzo(tthv, tthh, psi, anal_braggd=86.5)
              cixs_terzo

       XRStools.xrs_utilities.compute_matrix_elements(R1, R2, k, r)

       XRStools.xrs_utilities.con2mat(x, W, H, W_up, H_up)

       XRStools.xrs_utilities.constrained_mf(A, W_ini, W_up, coeff_ini, coeff_up, maxIter=1000, tol=1e-08,
       maxIter_power=1000)
              cfactorizeOffDiaMatrix  constrained  version of factorizeOffDiaMatrix Returns main components from
              an off-diagonal Matrix (energy-loss x angular-departure).

       XRStools.xrs_utilities.constrained_svd(M, U_ini, S_ini, VT_ini, U_up, max_iter=10000, verbose=False)
              constrained_nnmf Approximate singular value decomposition with constraints.

              function [U, S, V] = constrained_svd(M,U_ini,S_ini,V_ini,U_up,max_iter=10000,verbose=False)

       XRStools.xrs_utilities.convertSplitEDF2EDF(foldername)
              converts the old style EDF files (one image for horizontal and one image for vertical chambers) to
              the new style EDF (one single image).

              Arg:

                     foldername (str): Path to folder with all the EDF-files to be
                            converted.

       XRStools.xrs_utilities.convg(x, y, fwhm)
              Convolution with Gaussian x  = x-vector y  = y-vector fwhm = fulll width at half  maximum  of  the
              gaussian with which y is convoluted

       XRStools.xrs_utilities.convtoprim(hklconv)
              convtoprim converts diamond structure reciprocal lattice expressed in conventional lattice vectors
              to primitive one (Helsinki -> Palaiseau conversion) from S. Huotari

       XRStools.xrs_utilities.cshift(w1, th)
              cshift Calculates Compton peak position.

              Args:

                     • w1 (float, array): Incident energy in [keV].

                     • th (float): Scattering angle in [deg].

              Returns:

                     • w2 (foat, array): Energy of Compton peak in [keV].

              Funktion adapted from Keijo Hamalainen.

       XRStools.xrs_utilities.delE_JohannAberration(E, A, R, Theta)
              Calculates the Johann aberration of a spherical analyzer crystal.

              Args:  E      (float):  Working  energy  in  [eV].   A      (float):  Analyzer  aperture  [mm].  R
                     (float): Radius of the Rowland circle [mm].  Theta (float): Analyzer Bragg angle [degree].

              Returns:
                     Johann abberation in [eV].

       XRStools.xrs_utilities.delE_dicedAnalyzerIntrinsic(E, Dw, Theta)
              Calculates the intrinsic energy resolution of a diced crystal analyzer.

              Args:  E     (float): Working energy in [eV].  Dw    (float): Darwin width of the used  reflection
                     [microRad].  Theta (float): Analyzer Bragg angle [degree].

              Returns:
                     Intrinsic energy resolution of a perfect analyzer crystal.

       XRStools.xrs_utilities.delE_offRowland(E, z, A, R, Theta)
              Calculates the off-Rowland contribution of a spherical analyzer crystal.

              Args:  E      (float):  Working  energy  in  [eV].   z      (float): Off-Rowland distance [mm].  A
                     (float): Analyzer aperture [mm].  R     (float): Radius of the Rowland circle [mm].   Theta
                     (float): Analyzer Bragg angle [degree].

              Returns:
                     Off-Rowland contribution in [eV] to the energy resolution.

       XRStools.xrs_utilities.delE_pixelSize(E, p, R, Theta)
              Calculates the pixel size contribution to the resolution function of a diced analyzer crystal.

              Args:  E      (float): Working energy in [eV].  p     (float): Pixel size in [mm].  R     (float):
                     Radius of the Rowland circle [mm].  Theta (float): Analyzer Bragg angle [degree].

              Returns:
                     Pixel size contribution in [eV] to the energy resolution for a diced analyzer crystal.

       XRStools.xrs_utilities.delE_sourceSize(E, s, R, Theta)
              Calculates the source size contribution to the resolution function.

              Args:  E     (float): Working energy in [eV].  s     (float): Source size in [mm].  R     (float):
                     Radius of the Rowland circle [mm].  Theta (float): Analyzer Bragg angle [degree].

              Returns:
                     Source size contribution in [eV] to the energy resolution.

       XRStools.xrs_utilities.delE_stressedCrystal(E, t, v, R, Theta)
              Calculates the stress induced contribution to  the  resulution  function  of  a  spherically  bent
              crystal analyzer.

              Args:  E      (float):  Working  energy in [eV].  t     (float): Absorption length in the analyzer
                     material [mm].  v     (float): Poisson ratio of  the  analyzer  material.   R      (float):
                     Radius of the Rowland circle [mm].  Theta (float): Analyzer Bragg angle [degree].

              Returns:
                     Stress-induced contribution in [eV] to the energy resolution.

       XRStools.xrs_utilities.diode(current, energy, thickness=0.03)
              diode Calculates the number of photons incident for a Si PIPS diode.

              Args:

                     • current (float): Diode current in [pA].

                     • energy (float): Photon energy in [keV].

                     • thickness (float): Thickness of Si active layer in [cm].

              Returns:

                     • flux (float): Number of photons per second.

              Function adapted from Matlab function by S. Huotari.

       XRStools.xrs_utilities.dspace(hkl=[6, 6, 0], xtal='Si')
              %  DSPACE  Gives  d-spacing for given xtal %     d=dspace(hkl,xtal) %     hkl can be a matrix i.e.
              hkl=[1,0,0 ; 1,1,1]; %     xtal='Si','Ge','LiF','InSb','C','Dia','Li' (case insensitive) %      if
              xtal is number this is user as a d0 % %     KH 28.09.93 %        SH 2005 %

       class XRStools.xrs_utilities.dtxrd(hkl, energy, crystal='Si', asym_angle=0.0, angular_range=[- 0.0005,
       0.0005], angular_step=1e-08)
              Bases: object

              class to hold all things dynamic theory of diffraction.

              get_anomalous_absorption(energy=None)

              get_eta(angular_range, angular_step=1e-08)

              get_extinction_length(energy=None)

              get_reflection_width()

              get_reflectivity(angular_range=None, angular_step=None)

              set_asymmetry(alpha)
                     negative alpha -> more grazing incidence

              set_energy(energy)

              set_hkl(hkl)

       XRStools.xrs_utilities.dtxrd_anomalous_absorption(energy, hkl, alpha=0.0, crystal='Si',
       angular_range=array([- 0.0005]))

       XRStools.xrs_utilities.dtxrd_extinction_length(energy, hkl, alpha=0.0, crystal='Si')

       XRStools.xrs_utilities.dtxrd_reflectivity(energy, hkl, alpha=0.0, crystal='Si', angular_range=array([-
       0.0005]))

       XRStools.xrs_utilities.e2pz(w1, w2, th)
              Calculates  the  momentum scale and the relativistic Compton cross section correction according to
              P. Holm, PRA 37, 3706 (1988).

              This function is translated from Keijo Hamalainen's Matlab implementation (KH 29.05.96).

              Args:

                     • w1 (float or np.array): incident energy in [keV]

                     • w2 (float or np.array): scattered energy in [keV]

                     • th (float): scattering angle two theta in [deg]

              returns:

                     • pz (float or np.array): momentum scale in [a.u.]

                     • cf (float or np.array):  cross  section  correction  factor  such  that:  J(pz)  =  cf  *
                       d^2(sigma)/d(w2)*d(Omega) [barn/atom/keV/srad]

       XRStools.xrs_utilities.edfread(filename)
              reads edf-file with filename "filename" OUTPUT:    data = 256x256 numpy array

       XRStools.xrs_utilities.edfread_test(filename)
              reads edf-file with filename "filename" OUTPUT:    data = 256x256 numpy array

              here    is    how   i   opened   the   HH   data:   data   =   np.fromfile(f,np.int32)   image   =
              np.reshape(data,(dim,dim))

       XRStools.xrs_utilities.element(z)
              Converts atomic number into string of the element symbol and vice versa.

              Returns atomic number of given element, if z is a string  of  the  element  symbol  or  string  of
              element symbol of given atomic number z.

              Args:

                     • z (string or int): string of the element symbol or atomic number.

              Returns:

                     • Z (string or int): string of the element symbol or atomic number.

       XRStools.xrs_utilities.energy(d, ba)
              %  ENERGY   Calculates  energy corrresponing to Bragg angle for given d-spacing %         function
              e=energy(dspace,bragg_angle) % %       dspace  for  reflection  %       bragg_angle  in  DEG  %  %
              KH 28.09.93

       XRStools.xrs_utilities.energy_monoangle(angle, d=1.6374176589984608)
              %  ENERGY   Calculates  energy corrresponing to Bragg angle for given d-spacing %         function
              e=energy(dspace,bragg_angle) % %         dspace for reflection (defaulf for Si(311) reflection)  %
              bragg_angle in DEG % %         KH 28.09.93 %

       XRStools.xrs_utilities.fermi(rs)
              fermi  Calculates  the plasmon energy (in eV), Fermi energy (in eV), Fermi momentum (in a.u.), and
              critical plasmon cut-off vector (in a.u.).

              Args:

                     • rs (float): electron separation parameter

              Returns:

                     • wp (float): plasmon energy (in eV)

                     • ef (float): Fermi energy (in eV)

                     • kf (float): Fermi momentum (in a.u.)

                     • kc (float): critical plasmon cut-off vector (in a.u.)

              Based on Matlab function from A. Soininen.

       XRStools.xrs_utilities.find_center_of_mass(x, y)
              Returns the center of mass (first moment) for the given curve y(x)

       XRStools.xrs_utilities.find_diag_angles(q, x0, U, B, Lab, beam_in, lambdai, lambdao, tol=1e-08,
       method='BFGS')
              find_diag_angles Finds the FOURC spectrometer and sample angles for a desired q.

              Args:

                     • q (array): Desired momentum transfer in Lab coordinates.

                     • x0 (list): Guesses for the angles (tthv, tthh, chi, phi, omega).

                     • U (array): 3x3 U-matrix Lab-to-sample transformation.

                     • B (array): 3x3 B-matrix reciprocal lattice to absolute units transformation.

                     • lambdai (float): Incident x-ray wavelength in Angstrom.

                     • lambdao (float): Scattered x-ray wavelength in Angstrom.

                     • tol (float): Toleranz for minimization (see scipy.optimize.minimize)

                     • method (str): Method for minimization (see scipy.optimize.minimize)

              Returns:

                     • ans (array): tthv, tthh, phi, chi, omega

       XRStools.xrs_utilities.fwhm(x, y)
              finds full width at half maximum of the curve y vs. x returns f  =  FWHM  x0  =  position  of  the
              maximum

       XRStools.xrs_utilities.gauss(x, x0, fwhm)

       XRStools.xrs_utilities.get_UB_Q(tthv, tthh, phi, chi, omega, **kwargs)
              get_UB_Q  Returns  the  momentum  transfer and scattering vectors for given FOURC spectrometer and
              sample angles. U-, B-matrices and incident/scattered wavelength are passed as keyword-arguments.

              Args:

                     • tthv (float): Spectrometer vertical 2Theta angle.

                     • tthh (float): Spectrometer horizontal 2Theta angle.

                     • chi (float): Sample rotation around x-direction.

                     • phi (float): Sample rotation around y-direction.

                     • omega (float): Sample rotation around z-direction.

                     •

                       kwargs (dict): Dictionary with key-word arguments:

                              • kwargs['U'] (array): 3x3 U-matrix Lab-to-sample transformation.

                              • kwargs['B']  (array):  3x3  B-matrix  reciprocal  lattice  to   absolute   units
                                transformation.

                              • kwargs['lambdai'] (float): Incident x-ray wavelength in Angstrom.

                              • kwargs['lambdao'] (float): Scattered x-ray wavelength in Angstrom.

              Returns:

                     • Q_sample  (array): Momentum transfer in sample coordinates.

                     • Ki_sample (array): Incident beam direction in sample coordinates.

                     • Ko_sample (array): Scattered beam direction in sample coordinates.

       XRStools.xrs_utilities.get_gnuplot_rgb(start=None, end=None, length=None)
              get_gnuplot_rgb Prints out a progression of RGB hex-keys to use in Gnuplot.

              Args:

                     • start (array): RGB code to start from (must be numbers out of [0,1]).

                     • end   (array): RGB code to end at (must be numbers out of [0,1]).

                     • length  (int): How many colors to print out.

       XRStools.xrs_utilities.get_num_of_MD_steps(time_ps, time_step)
              Calculates  the number of steps in an MD simulation for a desired time (in ps) and given step size
              (in a.u.)

              Args:  time_ps   (float): Desired time span (ps).  time_step (float): Chosen time step (a.u.).

              Returns:
                     The number of steps required to span the desired time span.

       XRStools.xrs_utilities.getpenetrationdepth(energy, formulas, concentrations, densities)
              returns the penetration depth of a mixture of chemical formulas with  certain  concentrations  and
              densities

       XRStools.xrs_utilities.gettransmission(energy, formulas, concentrations, densities, thickness)
              returns  the  transmission  through  a sample composed of chemical formulas with certain densities
              mixed to certain concentrations, and a thickness

       XRStools.xrs_utilities.hex2rgb(hex_val)

       XRStools.xrs_utilities.hlike_Rwfn(n, l, r, Z)
              hlike_Rwfn Returns an array with the radial part of a hydrogen-like wave function.

              Args:

                     • n (integer): main quantum number n

                     • l (integer): orbitalquantum number l

                     • r (array): vector of radii on which the function should be evaluated

                     • Z (float): effective nuclear charge

       XRStools.xrs_utilities.householder(b, k)
              function H = householder(b, k) % H = householder(b, k) % Atkinson, Section 9.3, p. 611 %  b  is  a
              column  vector,  k  an index < length(b) % Constructs a matrix H that annihilates entries % in the
              product H*b below index k

              % $Id: householder.m,v 1.1 2008-01-16 15:33:30 mike Exp $ % M. M. Sussman

       XRStools.xrs_utilities.interpolate_M(xc, xi, yi, i0)
                 Linear interpolation scheme after Martin Sundermann  that  conserves  the  absolute  number  of
                 counts.

                 ONLY WORKS FOR EQUALLY/EVENLY SPACED XC, XI!

                 Args:  xc  (np.array):  The  x-coordinates  of  the  interpolated  values.   xi (np.array): The
                        x-coordinates of the data points, must be increasing.  yi (np.array): The  y-coordinates
                        of the data points, same length as xp.  i0 (np.array): Normalization values for the data
                        points, same length as xp.

                 Returns:
                        ic (np.array): The interpolated and normalized data points.

              from scipy.interpolate import Rbf x = arange(20) d = zeros(len(x)) d[10] = 1 xc = arange(0.5,19.5)
              rbfi = Rbf(x, d) di = rbfi(xc)

       XRStools.xrs_utilities.is_allowed_refl_fcc(H)
              is_allowed_refl_fcc Check if given reflection is allowed for a FCC lattice.

              Args:

                     • H (array, list, tuple): H=[h,k,l]

              Returns:

                     • boolean

       XRStools.xrs_utilities.lindhard_pol(q, w, rs=3.93, use_corr=False, lifetime=0.28)
              lindhard_pol  Calculates the Lindhard polarizability function (RPA) for certain q (a.u.), w (a.u.)
              and rs (a.u.).

              Args:

                     • q (float): momentum transfer (in a.u.)

                     • w (float): energy (in a.u.)

                     • rs (float): electron parameter

                     • use_corr (boolean): if True, uses Bernardo's calculation for n(k) instead  of  the  Fermi
                       function.

                     • lifetime (float): life time (default is 0.28 eV for Na).

              Based on Matlab function by S. Huotari.

       XRStools.xrs_utilities.makeprofile(element,
       filename='/usr/lib/python3/dist-packages/XRStools/resources/data/ComptonProfiles.dat', E0=9.69, tth=35.0,
       correctasym=None)
              takes  the  profiles from 'makepzprofile()', converts them onto eloss scale and normalizes them to
              S(q,w) [1/eV] input: element  = element symbol (e.g.  'Si',  'Al',  etc.)   filename  =  path  and
              filename  to  tabulated  profiles  E0        = scattering energy [keV] tth      = scattering angle
              [deg] returns: enscale = energy loss scale J = total CP C = only core contribution to CP V =  only
              valence contribution to CP q = momentum transfer [a.u.]

       XRStools.xrs_utilities.makeprofile_comp(formula,
       filename='/usr/lib/python3/dist-packages/XRStools/resources/data/ComptonProfiles.dat', E0=9.69, tth=35,
       correctasym=None)
              returns  the compton profile of a chemical compound with formula 'formula' input: formula = string
              of a chemical formula (e.g. 'SiO2', 'Ba8Si46', etc.)  filename = path and  filename  to  tabulated
              profiles  E0        =  scattering energy [keV] tth      = scattering angle  [deg] returns: eloss =
              energy loss scale J = total CP C = only core contribution to CP V = only valence  contribution  to
              CP q = momentum transfer [a.u.]

       XRStools.xrs_utilities.makeprofile_compds(formulas, concentrations=None,
       filename='/usr/lib/python3/dist-packages/XRStools/resources/data/ComptonProfiles.dat', E0=9.69, tth=35.0,
       correctasym=None)
              returns  sum  of  compton  profiles  from  a  lost  of  chemical  compounds  weighted by the given
              concentration

       XRStools.xrs_utilities.makepzprofile(element,
       filename='/usr/lib/python3/dist-packages/XRStools/resources/data/ComptonProfiles.dat')
              constructs compton profiles of element 'element' on pz-scale (-100:100 a.u.) from the Biggs tables
              provided in 'filename'

              input:

                     • element   = element symbol (e.g. 'Si', 'Al', etc.)

                     • filename  = path and filename to tabulated profiles

              returns:

                     • pzprofile = numpy array of the CP: *  1. column: pz-scale *  2. ... n.  columns:  compton
                       profile  of  nth shell * binden     = binding energies of shells * occupation = number of
                       electrons in the according shells

       XRStools.xrs_utilities.mat2con(W, H, W_up, H_up)

       XRStools.xrs_utilities.mat2vec(F, C, F_up, C_up, n, k, m)

       class XRStools.xrs_utilities.maxipix_det(name, spot_arrangement)
              Bases: object

              Class to store some useful values from the detectors used. To be used for arranging the ROIs.

              get_det_name()

              get_pixel_range()

       XRStools.xrs_utilities.momtrans_au(e1, e2, tth)
              Calculates the momentum transfer in atomic units  input:  e1   =  incident  energy   [keV]  e2   =
              scattered  energy  [keV]  tth  =  scattering  angle  [deg] returns: q   = momentum transfer [a.u.]
              (corresponding to sin(th)/lambda)

       XRStools.xrs_utilities.momtrans_inva(e1, e2, tth)
              Calculates the momentum transfer in inverse angstrom input: e1  = incident  energy   [keV]  e2   =
              scattered  energy  [keV]  tth  =  scattering  angle  [deg] returns: q   = momentum transfer [a.u.]
              (corresponding to sin(th)/lambda)

       XRStools.xrs_utilities.mpr(energy, compound)
              Calculates the photoelectric, elastic, and inelastic absorption of a chemical compound.

              Calculates the photoelectric, elastic, and inelastic absorption of a chemical compound.

              Args:

                     • energy (np.array): energy scale in [keV].

                     • compound (string): chemical sum formula (e.g. 'SiO2')

              Returns:

                     • murho (np.array): absorption coefficient normalized by the density.

                     • rho (float): density in UNITS?

                     • m (float): atomic mass in UNITS?

       XRStools.xrs_utilities.mpr_compds(energy, formulas, concentrations, E0, rho_formu)
              Calculates the photoelectric, elastic, and inelastic absorption of a mix of compounds.

              Returns the photoelectric absorption for a sum of different chemical compounds.

              Args:

                     • energy (np.array): energy scale in [keV].

                     • formulas (list of strings): list of chemical sum formulas

              Returns:

                     • murho (np.array): absorption coefficient normalized by the density.

                     • rho (float): density in UNITS?

                     • m (float): atomic mass in UNITS?

       XRStools.xrs_utilities.myprho(energy, Z,
       logtablefile='/usr/lib/python3/dist-packages/XRStools/resources/data/logtable.dat')
              Calculates the photoelectric, elastic, and inelastic absorption of an element Z

              Calculates the photelectric , elastic, and inelastic absorption of an element Z.  Z can be  atomic
              number or element symbol.

              Args:

                     • energy (np.array): energy scale in [keV].

                     • Z (string or int): atomic number or string of element symbol.

              Returns:

                     • murho (np.array): absorption coefficient normalized by the density.

                     • rho (float): density in UNITS?

                     • m (float): atomic mass in UNITS?

       XRStools.xrs_utilities.nonzeroavg(y=None)

       XRStools.xrs_utilities.odefctn(y, t, abb0, abb1, abb7, abb8, lex, sgbeta, y0, c1)
              #%     [T,Y]  =  ODE23(ODEFUN,TSPAN,Y0,OPTIONS,P1,P2,...)  passes  the additional #%    parameters
              P1,P2,... to the ODE function as ODEFUN(T,Y,P1,P2...), and to #%     all  functions  specified  in
              OPTIONS. Use OPTIONS = [] as a place holder if #%    no options are set.

       XRStools.xrs_utilities.odefctn_CN(yCN, t, abb0, abb1, abb7, abb8N, lex, sgbeta, y0, c1)

       XRStools.xrs_utilities.parseformula(formula)
              Parses a chemical sum formula.

              Parses the constituing elements and stoichiometries from a given chemical sum formula.

              Args:

                     • formula (string): string of a chemical formula (e.g. 'SiO2', 'Ba8Si46', etc.)

              Returns:

                     • elements (list): list of strings of constituting elemental symbols.

                     • stoichiometries   (list):  list  of  according  stoichiometries  in  the  same  order  as
                       'elements'.

       XRStools.xrs_utilities.plotpenetrationdepth(energy, formulas, concentrations, densities)
              opens a plot window of the penetration depth of  a  mixture  of  chemical  formulas  with  certain
              concentrations and densities plotted along the given energy vector

       XRStools.xrs_utilities.plottransmission(energy, formulas, concentrations, densities, thickness)
              opens a plot with the transmission plotted along the given energy vector

       XRStools.xrs_utilities.primtoconv(hklprim)
              primtoconv  converts  diamond  structure  reciprocal  lattice  expressed in primitive basis to the
              conventional basis (Palaiseau -> Helsinki conversion) from S. Huotari

       XRStools.xrs_utilities.pz2e1(w2, pz, th)
              Calculates the incident energy for a specific scattered photon and momentum value.

              Returns the incident energy for a given photon energy and  scattering  angle.   This  function  is
              translated from Keijo Hamalainen's Matlab implementation (KH 29.05.96).

              Args:

                     • w2 (float): scattered photon energy in [keV]

                     • pz (np.array): pz scale in [a.u.]

                     • th (float): scattering angle two theta in [deg]

              Returns:

                     • w1 (np.array): incident energy in [keV]

       XRStools.xrs_utilities.read_dft_wfn(element, n, l, spin=None,
       directory='/usr/lib/python3/dist-packages/XRStools/resources/data')
              read_dft_wfn Parses radial parts of wavefunctions.

              Args:

                     • element (str): Element symbol.

                     • n (int): Main quantum number.

                     • l (int): Orbital quantum number.

                     • spin (str): Which spin channel, default is average over up and down.

                     • directory (str): Path to directory where the wavefunctions can be found.

              Returns:

                     • r (np.array): radius

                     • wfn (np.array):

       XRStools.xrs_utilities.readbiggsdata(filename, element)
              Reads Hartree-Fock Profile of element 'element' from values tabulated by Biggs et al. (Atomic Data
              and   Nuclear   Data   Tables   16,   201-309   (1975))  as  provided  by  the  DABAX  library  (‐
              http://ftp.esrf.eu/pub/scisoft/xop2.3/DabaxFiles/ComptonProfiles.dat).  input: filename = path  to
              the  ComptonProfiles.dat file (the file should be distributed with this package) element  = string
              of element name returns:

                 •

                   data = the data for the according element as in the file:

                          • #UD  Columns:

                          • #UD  col1: pz in atomic units

                          • #UD  col2: Total compton profile (sum over the atomic electrons

                          • #UD  col3,...coln: Compton profile for the individual sub-shells

                 • occupation = occupation number of the according shells

                 • bindingen  = binding energies of the accorting shells

                 • colnames   = strings of column names as used in the file

       XRStools.xrs_utilities.readfio(prefix, scannumber, repnumber=0)
              if repnumber = 0: reads a spectra-file (name: prefix_scannumber.fio) if repnumber  >  1:  reads  a
              spectra-file (name: prefix_scannumber_rrepnumber.fio)

       XRStools.xrs_utilities.readp01image(filename)
              reads a detector file from PetraIII beamline P01

       XRStools.xrs_utilities.readp01scan(prefix, scannumber)
              reads a whole scan from PetraIII beamline P01 (experimental)

       XRStools.xrs_utilities.readp01scan_rep(prefix, scannumber, repetition)
              reads a whole scan with repititions from PetraIII beamline P01 (experimental)

       XRStools.xrs_utilities.savitzky_golay(y, window_size, order, deriv=0, rate=1)
              Smooth  (and  optionally  differentiate)  data  with  a Savitzky-Golay filter.  The Savitzky-Golay
              filter removes high frequency noise from data.  It has the advantage of  preserving  the  original
              shape  and  features of the signal better than other types of filtering approaches, such as moving
              averages techniques.

              Parameters:

                     • y : array_like, shape (N,) the values of the time history of the signal.

                     • window_size : int the length of the window. Must be an odd integer number.

                     • order : int the order of the polynomial  used  in  the  filtering.   Must  be  less  then
                       window_size - 1.

                     • deriv: int the order of the derivative to compute (default = 0 means only smoothing)

              Returns

                     • ys : ndarray, shape (N) the smoothed signal (or it's n-th derivative).

              Notes: The  Savitzky-Golay  is  a type of low-pass filter, particularly suited for smoothing noisy
                     data. The main idea behind this approach is to make for each point a least-square fit  with
                     a polynomial of high order over a odd-sized window centered at the point.

              Examples

                 t = np.linspace(-4, 4, 500)
                 y = np.exp( -t**2 ) + np.random.normal(0, 0.05, t.shape)
                 ysg = savitzky_golay(y, window_size=31, order=4)
                 import matplotlib.pyplot as plt
                 plt.plot(t, y, label='Noisy signal')
                 plt.plot(t, np.exp(-t**2), 'k', lw=1.5, label='Original signal')
                 plt.plot(t, ysg, 'r', label='Filtered signal')
                 plt.legend()
                 plt.show()

              References ::

              [1]  A.  Savitzky,  M.  J.  E.  Golay,  Smoothing  and Differentiation of Data by Simplified Least
                   Squares Procedures. Analytical Chemistry, 1964, 36 (8), pp 1627-1639.

              [2]  Numerical Recipes 3rd Edition: The Art of Scientific Computing W.H.  Press,  S.A.  Teukolsky,
                   W.T. Vetterling, B.P. Flannery Cambridge University Press ISBN-13: 9780521880688

       XRStools.xrs_utilities.sgolay2d(z, window_size, order, derivative=None)

       XRStools.xrs_utilities.sigmainc(Z, energy,
       logtablefile='/usr/lib/python3/dist-packages/XRStools/resources/data/logtable.dat')
              sigmainc Calculates the Incoherent Scattering Cross Section in cm^2/g using Log-Log Fit.

              Args:

                     • z (int or string): Element number or elements symbol.

                     • energy (float or array): Energy (can be number or vector)

              Returns:

                     • tau (float or array): Photoelectric cross section in [cm**2/g]

              Adapted from original Matlab function of Keijo Hamalainen.

       XRStools.xrs_utilities.specread(filename, nscan)
              reads scan "nscan" from SPEC-file "filename"

              INPUT:

                     • filename = string with the SPEC-file name

                     • nscan    = number (int) of desired scan

              OUTPUT:

                     • data     =

                     • motors   =

                     • counters = dictionary

       XRStools.xrs_utilities.spline2(x, y, x2)
              Extrapolates the smaller and larger valuea as a constant

       XRStools.xrs_utilities.split_hdf5_address(dataadress)

       XRStools.xrs_utilities.stiff_compl_matrix_Si(e1, e2, e3, ansys=False)
              stiff_compl_matrix_Si Returns stiffnes and compliance tensor of Si for a given orientation.

              Args:

                     • e1 (np.array): unit vector normal to crystal surface

                     • e2 (np.array): unit vector crystal surface

                     • e3 (np.array): unit vector orthogonal to e2

              Returns:

                     • S (np.array): compliance tensor in new coordinate system

                     • C (np.array): stiffnes tensor in new coordinate system

                     • E (np.array): Young's modulus in [GPa]

                     • G (np.array): shear modulus in [GPa]

                     • nu (np.array): Poisson ratio

              Copied  from S.I. of L. Zhang et al. "Anisotropic elasticity of silicon and its application to the
              modelling of X-ray optics."  J. Synchrotron Rad. 21, no. 3 (2014): 507-517.

       XRStools.xrs_utilities.sumx(A)
              Short-hand command to sum over 1st dimension of a N-D matrix (N>2) and  to  squeeze  it  to  N-1-D
              matrix.

       XRStools.xrs_utilities.svd_my(M, maxiter=100, eta=0.1)

       XRStools.xrs_utilities.taupgen(e, hkl=[6, 6, 0], crystals='Si', R=1.0, dev=array([- 50., - 49., - 48., -
       47., - 46., - 45., - 44., - 43., - 42., - 41., - 40., - 39., - 38., - 37., - 36., - 35., - 34., - 33., -
       32., - 31., - 30., - 29., - 28., - 27., - 26., - 25., - 24., - 23., - 22., - 21., - 20., - 19., - 18., -
       17., - 16., - 15., - 14., - 13., - 12., - 11., - 10., - 9., - 8., - 7., - 6., - 5., - 4., - 3., - 2., -
       1., 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21.,
       22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38., 39., 40., 41., 42.,
       43., 44., 45., 46., 47., 48., 49., 50., 51., 52., 53., 54., 55., 56., 57., 58., 59., 60., 61., 62., 63.,
       64., 65., 66., 67., 68., 69., 70., 71., 72., 73., 74., 75., 76., 77., 78., 79., 80., 81., 82., 83., 84.,
       85., 86., 87., 88., 89., 90., 91., 92., 93., 94., 95., 96., 97., 98., 99., 100., 101., 102., 103., 104.,
       105., 106., 107., 108., 109., 110., 111., 112., 113., 114., 115., 116., 117., 118., 119., 120., 121.,
       122., 123., 124., 125., 126., 127., 128., 129., 130., 131., 132., 133., 134., 135., 136., 137., 138.,
       139., 140., 141., 142., 143., 144., 145., 146., 147., 148., 149.]), alpha=0.0)
              %   TAUPGEN            Calculates   the   reflectivity  curves  of  bent  crystals  %  %  function
              [refl,e,dev]=taupgen_new(e,hkl,crystals,R,dev,alpha); % %              e = fixed nominal energy in
              keV %            hkl = reflection order vector, e.g. [1 1 1] %       crystals  =  crystal  string,
              e.g.  'si'  or  'ge'  %               R  =  bending  radius in meters %            dev = deviation
              parameter for which  the  %                   curve  will  be  calculated  (vector)  (optional)  %
              alpha = asymmetry angle % based on a FORTRAN program of Michael Krisch % Translitterated to Matlab
              by Simo Huotari 2006, 2007 % Is far away from being good matlab writing - mostly copy&paste from %
              the fortran routines. Frankly, my dear, I don't give a damn.  % Complaints -> /dev/null

       XRStools.xrs_utilities.taupgen_amplitude(e, hkl=[6, 6, 0], crystals='Si', R=1.0, dev=array([- 50., - 49.,
       - 48., - 47., - 46., - 45., - 44., - 43., - 42., - 41., - 40., - 39., - 38., - 37., - 36., - 35., - 34.,
       - 33., - 32., - 31., - 30., - 29., - 28., - 27., - 26., - 25., - 24., - 23., - 22., - 21., - 20., - 19.,
       - 18., - 17., - 16., - 15., - 14., - 13., - 12., - 11., - 10., - 9., - 8., - 7., - 6., - 5., - 4., - 3.,
       - 2., - 1., 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19.,
       20., 21., 22., 23., 24., 25., 26., 27., 28., 29., 30., 31., 32., 33., 34., 35., 36., 37., 38., 39., 40.,
       41., 42., 43., 44., 45., 46., 47., 48., 49., 50., 51., 52., 53., 54., 55., 56., 57., 58., 59., 60., 61.,
       62., 63., 64., 65., 66., 67., 68., 69., 70., 71., 72., 73., 74., 75., 76., 77., 78., 79., 80., 81., 82.,
       83., 84., 85., 86., 87., 88., 89., 90., 91., 92., 93., 94., 95., 96., 97., 98., 99., 100., 101., 102.,
       103., 104., 105., 106., 107., 108., 109., 110., 111., 112., 113., 114., 115., 116., 117., 118., 119.,
       120., 121., 122., 123., 124., 125., 126., 127., 128., 129., 130., 131., 132., 133., 134., 135., 136.,
       137., 138., 139., 140., 141., 142., 143., 144., 145., 146., 147., 148., 149.]), alpha=0.0)
              %   TAUPGEN            Calculates   the   reflectivity  curves  of  bent  crystals  %  %  function
              [refl,e,dev]=taupgen_new(e,hkl,crystals,R,dev,alpha); % %              e = fixed nominal energy in
              keV %            hkl = reflection order vector, e.g. [1 1 1] %       crystals  =  crystal  string,
              e.g.  'si'  or  'ge'  %               R  =  bending  radius in meters %            dev = deviation
              parameter for which  the  %                   curve  will  be  calculated  (vector)  (optional)  %
              alpha = asymmetry angle % based on a FORTRAN program of Michael Krisch % Translitterated to Matlab
              by Simo Huotari 2006, 2007 % Is far away from being good matlab writing - mostly copy&paste from %
              the fortran routines. Frankly, my dear, I don't give a damn.  % Complaints -> /dev/null

       XRStools.xrs_utilities.tauphoto(Z, energy,
       logtablefile='/usr/lib/python3/dist-packages/XRStools/resources/data/logtable.dat')
              tauphoto Calculates Photoelectric Cross Section in cm^2/g using Log-Log Fit.

              Args:

                     • z (int or string): Element number or elements symbol.

                     • energy (float or array): Energy (can be number or vector)

              Returns:

                     • tau (float or array): Photoelectric cross section in [cm**2/g]

              Adapted from original Matlab function of Keijo Hamalainen.

       XRStools.xrs_utilities.unconstrained_mf(A, numComp=3, maxIter=1000, tol=1e-08)
              unconstrained_mf   Returns   main   components   from   an   off-diagonal  Matrix  (energy-loss  x
              angular-departure), using the power method iteratively on the different main components.

       XRStools.xrs_utilities.vangle(v1, v2)
              vangle Calculates the angle between two cartesian vectors v1 and v2 in degrees.

              Args:

                     • v1 (np.array): first vector.

                     • v2 (np.array): second vector.

              Returns:

                     • th (float): angle between first and second vector.

              Function by S. Huotari, adopted for Python.

       XRStools.xrs_utilities.vec2mat(x, F, C, F_up, C_up, n, k, m)

       XRStools.xrs_utilities.vrot(v, vaxis, phi)
              vrot Rotates a vector around a given axis.

              Args:

                     • v (np.array): vector to be rotated

                     • vaxis (np.array): rotation axis

                     • phi (float): angle [deg] respecting the right-hand rule

              Returns:

                     • v2 (np.array): new rotated vector

              Function by S. Huotari (2007) adopted to Python.

       XRStools.xrs_utilities.vrot2(vector1, vector2, angle)
              rotMatrix Rotate vector1 around vector2 by an angle.

       XRStools.xrs_utilities.xas_fluo_correct(ene, mu, formula, fluo_ene, edge_ene, angin, angout)
              xas_fluo_correct  Fluorescence  yield  over-absorption  correction  as  in   Larch/Athena.    see:
              https://www3.aps.anl.gov/haskel/FLUO/Fluo-manual.pdf

              Args:

                     • ene (np.array): energy axis in [keV]

                     • mu (np.array): measured fluorescence spectrum

                     • formula (str): chemical sum formulas (e.g. 'SiO2')

                     • fluo_ene (float): energy in keV of main fluorescence line

                     • edge_ene (float): edge energy in [keV]

                     • angin (float): incidence angle (relative to sample normal) [deg.]

                     • angout (float): exit angle (relative to sample normal) [deg.]

              Returns:

                     • ene (np.array): energy axis in [keV]

                     • mu_corr (np.array): corrected fluorescence spectrum

   XRStools.roifinder_and_gui Module
       • genindex

       • modindex

       • search

AUTHOR

       Christoph Sahle, Alessandro Mirone

COPYRIGHT

       2022, Christoph Sahle, Alessandro Mirone

1                                                 Jan 13, 2022                                       XRSTOOLS(1)